MiFuture, Grant Agreement Number: 101119643 D3.1 RRM & Scheduling

Ultra-Massive MIMO for Future Cell-Free
Heterogeneous Networks - MiFuture

Radio Resource Management(RRM)

&
Scheduling

Deliverable 3.1

Grant Agreement Number: 101119643

Project Acronym: MiFuture

Project Title: ultra-massive MIMO for future cell-free heterogeneous
networks

Call: HORIZON-MSCA-2022-DN-01

Type of action: HORIZON TMA MSCA Doctoral Networks -
Industrial Doctorates

Granting authority: European Research Executive Agency

Project start date: 01/01/2024

September 22, 2025 i Instituto de Telecomunicacdes(IT)



MiFuture, Grant Agreement Number: 101119643

D3.1 RRM & Scheduling

VERSION DETAILS
Original Delivery Date: 31/08/2025
Actual Delivery Date: 22/09/2025
Version: V0.3
Number of Pages: 44
Status: Draft
Dissemination level: Public

CONTRIBUTIONS

Participant

Name

Instituto de Telecomunicacdes(IT

Prof. Rui Dinis

Instituto de Telecomunicacdes(IT

Prof.Marco Gomes

Prabhat Gupta

)
)
Instituto de Telecomunicacdes(IT)
Universidad Carlos Il de Madrid (UC3M)

Rubén de Miguel Gil

(
Universidad Carlos Il de Madrid (UC3M)

Masoumeh Jamshidi

Tampere University (TAU)

Mehmet Fatih Ayten

Ericsson Josep Fernandez
DOCUMENT HISTORY

Version Date Responsible Description
3.0 22/09/2025 Prabhat Gupta Third Draft
1.0 30/07,/2025 Rubén de Miguel First Draft
1.0 24/07/2025 Masoumeh First Draft

Jamshidi
1.0 10/08/2025 Mehmet Fatih First Draft
1.0 25/07,/2025 Josep Fernandez First Draft
DELIVERY REVIEW

Version Date Reviewed By Conclusion
1.0 08/09/2025 Supervisory Board | Modify
2.0 10/09/2025 Supervisory Board | Modify
3.0 20/09/2025 Supervisory Board | Modify

*e.g. Accepted, Develop, Modify, Re-edit, Update

September 22, 2025

Instituto de Telecomunicacdes(IT)




MiFuture, Grant Agreement Number: 101119643 D3.1 RRM & Scheduling

Beneficiaries and Partners

Beneficiaries:

1.
2.
3.
4,

5.

10.
11.
12.

UNIVERSIDAD CARLOS Il DE MADRID (UC3)
INSTITUTO DE TELECOMUNICACOES (IT)
TAMPEREEN KORKEAKOULUSAATIO SR (TAU)
LUNDS UNIVERSITET (ULUND)

UNIVERSITAT AUTONOMA DE BARCELONA (UAB)

. VODAFONE INTELLIGENT SOLUTIONS ESPANA (VOIS)

OY L M ERICSSON AB (ERF)

ERICSSON AB (ERS)

NOKIA SOLUTIONS AND NETWORKS SP ZOO (NOP)
NOKIA SOLUTIONS AND NETWORKS OY (NOF)
ALTYS TECHNOLOGIES (ALT)

KEYSIGHT TECHNOLOGIES BELGIUM (KEY)

Partners:

1.
2.
3.

UNIVERSIDADE NOVA DE LISBOA (UNL)
UNIVERSIDADE DE AVEIRO (UAv)

UNIVERSIDADE DE COIMBRA (UCo)

KATHOLIEKE UNIVERSITEIT LEUVEN (KUL)
KEYSIGHT TECHNOLOGIES UK LIMITED (KEY-UK)

September 22, 2025 i Instituto de Telecomunicacdes(IT)



MiFuture, Grant Agreement Number: 101119643 D3.1 RRM & Scheduling

Executive Summary

Efficiently utilising limited spectrum in an optimised and fair manner has always been a
central challenge in wireless communications. Radio Resource Management (RRM) and
scheduling are pivotal components of the network, responsible for allocating resources
and meeting the diverse and stringent requirements of emerging services.

As we transition toward 6G and cell-free architectures, traditional RRM approaches are
evolving to incorporate intelligent decision-making through artificial intelligence (Al).
These advancements enable more accurate modelling of user behaviour and traffic pat-
terns, leading to improved spectral efficiency and more adaptive resource allocation.
However, they also introduce new challenges, particularly in power efficiency and Access
Point (AP) selection, that must be addressed through holistic network design.

Power and spectral efficiency considerations now extend beyond the network core to in-
clude User Equipment (UE). Intelligent RRM and scheduling strategies at the UE level,
including continuous radio link monitoring and adaptive AP connectivity, are essential
to meet the timing and service constraints imposed by the network. In ultra-massive
MIMO systems, non-coherent transmission schemes are being explored to further en-
hance throughput, reliability, and coordination between the physical and MAC layers.

Accurate user positioning, enabled by ultra-massive MIMO advanced sensing capabil-
ities, plays a critical role in next-generation RRM. With real-time location awareness,
networks can allocate resources more precisely, reduce latency, and ensure Quality of
Service (QoS) for individual users. Native Al techniques support predictive mobility
management and dynamic beamforming, making real-time AP selection and per-user
power optimisation integral to the 6G RRM landscape.

State-of-the-art solutions already incorporate Al-driven functionality in the RAN Intelli-
gent Controller (RIC), which hosts applications for network management, optimisation,
and routing. Emerging research also focuses on leveraging positioning data for AP selec-
tion and integrating non-coherent waveforms in MIMO systems for enhanced flexibility
and robustness.

These advances lay the foundation for 6G networks to shift from static, centralised man-
agement toward distributed, dynamic, and context-aware RRM and scheduling frame-
works. This transition will support the vision of ubiquitous, high-performance, and
energy-efficient communication in cell-free 6G networks.
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Chapter 1

Introduction

Radio Resource Management (RRM) refers to the set of algorithms and protocols that
manage the co-channel interference, how radio resources (like frequency, time, power and
space) are allocated and used, User Equipment (UE) configurations and state control,
and other radio transmission characteristics in wireless communication systems. Its main
objective is to utilize the limited RF spectrum resources given and the radio network
infrastructure as efficiently as possible. [3]

Scheduling refers to allocating these resources at every time interval in a way that
each user receives the desired Quality of Service (QoS) and therefore the Quality of
Experience (QoE) while utilizing the available resources, in the best possible manner
and serving a maximum number of users at the same time. This introduces several
optimisation problems linked to RRM. [4]

RRM is designed to ensure a smooth mobility experience for users, where both the UE
and the network handle mobility management automatically, with no need for user in-
volvement. To provide support for seamless mobility, the UE plays a central role in this
process by performing tasks such as cell search and cell selection during idle mode, as
well as signal measurements and reporting to the network for mobility decisions during
connected mode. These operations are designed to be efficient, minimizing power con-
sumption and complexity while maintaining high performance. [5]

To meet the growing demand for high-definition video, AR/VR, and cloud gaming, and
to enable real-time applications such as autonomous driving and remote surgery, much
higher bandwidths are required to achieve faster data rates and lower latencies. In 5G
NR, a latency of 1 ms under ideal conditions and peak download data rates of 10 Gbps
or more can be achieved. However, the stricter latency requirements, combined with the
availability of Resource Blocks every 1 ms, have increased the challenges of scheduling
and RRM. To address these challenges and leverage the diversity offered by MIMO,
cell-free systems were introduced.

With the introduction of cell-free systems, a major challenge of RRM and scheduling
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has been addressed. In traditional cell-based systems, a large number of Access Points
(APs) are required to support the increasing data rates and number of users, and
the Signal-to-Noise Ratio (SNR) depends on the distance between the user and the
serving AP. As a result, users located near the AP experience higher SNR, while those
at the cell edge suffer from lower SNR. In contrast, cell-free systems eliminate these
cell boundaries and adopt a user-centric approach. This approach identifies the most
suitable APs for each user, allowing multiple APs to serve the user simultaneously in a
coordinated manner, thereby ensuring the requested SNR and Quality of Service (QoS).
The user-centric strategy can be implemented in two ways: a centralized approach,
where each AP relays information to a Central Unit responsible for decision-making and
resource allocation; or a decentralized approach, where each AP independently handles
data encoding/decoding and performs its own resource management.

However, the cell-free architecture also introduces challenges, such as determining the
most suitable APs to connect to in order to maximize spectral efficiency while simultane-
ously reducing signaling overhead and power consumption [6]. To address these issues,
RRM solves various optimization problems, including AP selection and power alloca-
tion for users sharing the same time—frequency resources. This, however, leads to the
challenge of channel estimation, which requires substantial overhead and can negatively
affect the optimized performance [7] Another challenge is ensuring appropriate levels
of cooperation among APs to support efficient resource allocation algorithms. These
optimization algorithms may be designed with either a single objective or multiple ob-
jectives, typically focusing on maximizing the spectral efficiency of both individual users
and the overall system [8]. Moreover, distributed large-scale antenna structures can
be leveraged for sensing, enabling user positioning and tracking. This capability allows
the user’s location to be determined at each time instant, thereby enhancing resource
management and AP selection [9].

Since cell-free networks are used to increase the throughput of the system, RRM with
multi-user non-coherent systems becomes crucial. Non-coherent wireless communica-
tion systems can transmit information through the wireless medium without any chan-
nel estimation procedure. To achieve this, special modulation schemes are used [10].
MIMO systems, thanks to their channel hardening property brought by the high number
of physical channels, bring a prolific environment for non-coherent modulation schemes.

The main problem that non-coherent schemes aim to address is the performance degra-
dation in the uplink of coherent systems under high-mobility conditions, where rapid
channel variations increase the frequency of channel estimation procedures and thereby
waste time—frequency resources. Currently, three main types of non-coherent modula-
tion schemes are used in MIMO systems: energy-based schemes, Grassmannian schemes,
and differential schemes [2].

As previously mentioned, with a large number of antennas it is possible to achieve radar-
like capabilities that allow tracking of the user and estimating the user’s position within
the network. Leveraging this information for scheduling and resource management can
play a major role. The main advantages of knowing the user's position are:
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» Knowing the best channels between the APs and the user.

= The APs can be preselected if the user's movement is predicted, reducing the
latency.

= High interference zone can be known, and the best APs can be chosen accordingly
to satisfy the user requirements.

= More precise and coordinated beamforming can be done towards the user
= Supporting faster handovers and beam reconfiguration.

= Improving fairness among users, as both edge users and central users are treated
equally.

» Enhancing scalability by reducing signaling requirements.

Along with the user's location, the introduction to Artificial Intelligence (Al) in the net-
work is highly influential in managing the resources. Al is now being embedded natively
within network procedures and protocols. Al-native systems incorporate Al mecha-
nisms intrinsically into their operations, enabling autonomous, adaptive, and proactive
decision-making across multiple layers of the network. Open Radio Access Network
(Open RAN) architecture, characterized by its openness, modularity, and standardiza-
tion efforts led by the O-RAN Alliance, offers an ideal framework for deploying Al-native
procedures. Open RAN disaggregates traditional RAN components and exposes open
interfaces, thus enabling multi-vendor ecosystems and flexible deployment of Al func-
tionalities. Moreover, the alignment with 3GPP standards, particularly Release 18, which
introduces Al and data analytics frameworks such as Network Data Analytics Function
(NWDAF), paves the way for scalable and interoperable Al-native protocol adoption.
Embedding Al at the protocol and procedure level facilitates real-time resource opti-
mization, predictive maintenance, enhanced security, and intelligent network slicing, all
essential to fulfil the ambitious goals of current and future wireless systems.

To analyze RRM from different angles and perspectives, we will examine various strate-
gies and state-of-the-art approaches for improved scheduling and management at the
UE level, including the use of non-coherent systems, Al-driven methods, along with how
position plays a major role in these scenarios.

September 22, 2025 3 Instituto de Telecomunicacdes(IT)



Chapter 2

State of the Art

This chapter presents the state of the art in beyond-5G communication systems, with
a focus on power and AP selection optimization in cell-free networks. It also examines
how current systems address challenges through the use of non-coherent waveforms, the
integration of Al, and user equipment (UE)-level strategies for RRM and scheduling.

2.1 Power Allocation in Cell-Free Networks

A key resource in cell-free networks is the transmit power allocated by each AP antenna
to each User Equipment (UE) antenna in the downlink, or vice versa in the uplink.
Power control algorithms regulate this allocation, optimizing system gains and enhancing
overall network performance [11]. Power control schemes are generally governed by the
Central Processing Unit (CPU). Conditions such as channel hardening and favorable
propagation help to limit the transmission coefficients up to just large scale fading
characteristics [9, 12]. In this way, distributed power control policies can handle the
near—far effect between UEs and APs while also managing strong interference, both
from other UEs and from estimation errors in the serving UE's channel.

Through these power control policies, specific objectives, such as maximizing spectral
efficiency (SE) subject to power constraints, can be achieved, thereby optimizing network
performance as the number of UEs and APs scales up. A common assumption is that
the number of antennas exceeds the number of UEs [13]. The simplest strategy is to
assume that all UEs transmit at maximum power, as is often considered in the design
of several detection techniques [14, 15]. However, this approach is suboptimal as it
leads to wasted power and excessive interference. Consequently, significant research
has focused on developing efficient power control algorithms that balance the trade-offs
between performance and computational complexity [16, 17].

Power allocation algorithms solve optimization problems subject to constraints such as
the AP’s link budget and the maximum transmit power supported by each antenna
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in both uplink and downlink. These constraints are often modeled using fairness cri-
teria, which guarantee that each UE is served by at least one AP, with the decision
variables being the power control coefficients. Optimization schemes include Max—Min
Fairness (MMF), maximum sum rate, and total radiated power, among others. Such
schemes may be combined to effectively solve the allocation problem [18]. As the net-
work scales, complexity grows, and enforcing fairness becomes increasingly challenging
[19]. To address this, multi-objective programming with meta-heuristic approaches can
be employed, offering near-optimal solutions with reduced computational complexity
[20, 21]. The key idea is to incorporate all relevant constraints into a multi-objective
optimization framework to balance trade-offs while ensuring the system meets key per-
formance indicators (KPIs).

User Power Optimization

Full-power transmission often results in excessive interference and inefficient energy use
[9]. The objective is therefore to maximize metrics such as max—min fairness [8] or
the network’'s maximum sum rate, while minimizing interference. Since higher power
inevitably increases interference, careful selection of transmit power is critical for achiev-
ing the desired outcome, particularly under the assumption that all UEs share the same
spectrum.

In the uplink, data reception occurs in two stages [15]. First, each AP estimates the
channel within a coherent time—frequency block and applies a receiver-combining tech-
nique to generate local estimates of the UE's uplink data. In the second stage, these
local estimates are forwarded to the CPU, which aggregates them through averaging
into a final estimate. Importantly, the CPU does not require knowledge of the channel
estimation, as the AP handles that locally. This approach significantly reduces signaling
load on fronthaul and backhaul links between the APs and the CPU [22].

The local estimate for the k*" UE at AP / using a local combining vector v, € CN(0, 1)
is given by [23]:

i=K
o H H § : H H
Sy, = V/k Y/ = V,k Hk/SI -+ V,k H/I.S/i -+ V/k VV/ . (21)
i=1,i#k

Here, Hy, denotes the channel matrix, s; is the signal from the desired UE, s; are the
the interfering signals from the remaining UEs and W, is the the additive noise.

The most common design for the local combining vector is Maximum Ratio Combining
(MRC), where v, = Hy;. MRC leverages favorable propagation and channel hardening
to reduce inter-user interference while maximizing the desired signal [14]. After local
combining, each AP forwards its estimate to the CPU, which performs a weighted
averaging to maximize SE.
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The achievable SE of a UE k can be expressed as [12]:

Tc
where the Signal-to-Interference-plus-Noise Ratio (SINR) is:

pr | i BV Hi) 1P

SINR, = ik L HH |2 2L 2
Zi:l,i;ék PiEll Y2, Vi Hi Pl + 02314 IE[V/k]

(2.3)

Considering a cell-free system, the uplink power optimization problem can be formulated
as follows: the decision variables are the power coefficients allocated to each UE k,
denoted as p,. The constraint is that the power must not exceed the maximum uplink
transmission power P,,... Power optimization is typically based on the max—min fairness
scheme, which seeks to ensure balanced performance across all users [8]. This is achieved
by optimizing px to maximize the spectral efficiency (SE) of the weakest UE, i.e., the
one with the poorest channel conditions. In this way, the optimization avoids bias toward
stronger UEs and guarantees fairness. The max—min fairness problem can be expressed
as:

max min SE,, k=1,..., K
Pk (2.4)
st. 0 S Pk S pmaXy\V/k-

A similar formulation applies to downlink optimization. In this case, either the same
SINR can be assumed considering it as a virtual uplink problem or the Signal-to-Leakage
& Noise Ratio (SLNR) can be considered. In downlink transmission, power is allocated
to beamforming vectors, which must be optimized and directed toward the intended UE
to separate users and mitigate interference. This beamforming optimization problem
introduces the concepts of eigenspaces and eigenvectors [24].

Different precoding strategies can be employed to balance the trade-off between high
signal power and interference. The optimal solution generally lies between Zero-Forcing
(ZF) and Maximum Ratio Transmission (MRT), with the latter being the downlink
counterpart of Maximum Ratio Combining (MRC) in the uplink [24]. ZF represents one
extreme, where beamforming vectors are designed to be orthogonal, thereby eliminating
inter-user interference. MRT represents the opposite extreme, assuming no inter-user
interference and only Gaussian noise in the system, and aims to maximize the desired
signal power. In practice, optimization heuristics are often used to balance these two
extremes, with ZF typically performing better in interference-limited scenarios [25].

The downlink beamforming problem can be visualized as projecting each user’s signal
into a large subspace, where each beam is aligned with the dominant eigenvector of the
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corresponding APs. Figure 2.1 illustrates this subspace for multiple users with respect
to the beamforming direction of the intended user [26].

wik(ZF)

ViklSLNR -optimised)

Channel of

intended user "

Vi(MRT)

span{H"5 .}

Subsapce
of other
user

Figure 2.1: Eigen Subspace

The eigenvectors should be designed to maximize power for the intended user while
maintaining orthogonality to other users. One way to quantify orthogonality between
beamforming vectors is through the chordal distance, defined as [9]:

de(X, Y) = [XX" = Y Y12 (2.5)

where X and Y are two different eigenvectors, and F denotes the Frobenius norm.

To optimize resources effectively and ensure efficient power allocation, it is essential
to jointly consider AP-UE associations in a cell-free network, where the number of AP
antennas typically exceeds the number of UEs. Selecting the most suitable APs for each
UE is critical to achieving maximum system performance.

2.1.1 AP Selection

To evaluate performance, it is commonly assumed that the fronthaul has limited capac-
ity, whereas the backhaul link has unlimited capacity and can handle all data transferred
from the APs. However, to alleviate the burden on the CPU and reduce transmission
and detection complexity, effective AP-UE associations are essential. Such approaches
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reduce fronthaul complexity and signaling requirements, ultimately lowering the pro-
cessing complexity in the backhaul as well. In this context, optimized AP selection
algorithms play a critical role [18].

Depending on network characteristics and UE distribution, the contribution of certain
APs can result in high inter-user interference, thereby decreasing the SINR at the CPU
[6]. In[19], a joint power allocation and AP selection scheme is proposed that minimizes
energy consumption while preserving quality of service (QoS). Similarly, [6] presents an
innovative AP selection and signal detection method that enhances UE throughput and
reduces fronthaul load by considering both channel quality and effective channel gain to
sequentially allocate APs to users. In [27], the authors demonstrate that AP selection
schemes can significantly improve downlink spectral efficiency while balancing network
load and reducing power consumption [22].

Thus, AP selection is crucial for minimizing fronthaul and backhaul overhead, reducing
processing complexity, and ensuring load balancing, particularly in mobile scenarios.
In [28], a cluster-centric approach for AP selection and power control is proposed.
Meanwhile, [29] investigates the impact of different UE velocities on downlink SE,
emphasizing the importance of pilot training up to a certain velocity and highlighting
the effects of channel aging due to mobility. To mitigate channel aging, precise user
tracking is required.

Most AP selection schemes aim to minimize the number of UEs connected to each AP
in order to reduce signaling overhead and maximize spectral efficiency. This ensures
buffer balance across APs, enabling each one to provide adequate QoS to its connected
UEs [18]. To conserve power and improve energy efficiency, each UE is typically served
by a subset of APs. This group can be selected based on criteria such as received power
or large-scale fading characteristics [18].

((\;3:“3)
(G A

Reduces Petformance

Optimized Rescurce Allocation

Precise Beamforming

Figure 2.2: Positioning and Beamforming

As shown in [29], user positioning plays a critical role in AP selection. By leveraging
location information, more accurate channel estimates between UEs and APs can be
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obtained, enabling the activation of only those APs with favorable channel conditions.
This improves efficiency by reducing interference, facilitating faster handovers, and low-
ering signaling requirements. Furthermore, precise positioning enables more accurate
beamforming, which increases SINR, enhances spectral efficiency, and excludes irrele-
vant APs. As a result, energy efficiency and throughput improve with optimized power
allocation. Figure 2.2 illustrates how positioning, accurate beamforming, and optimized
AP selection are essential for interference reduction and overall network performance.
For instance, AP-UE connections represented by the red beams would increase system
complexity, as these associations may correspond to APs with poor channel conditions,
overloaded APs, or APs directing disproportionate power to users already experiencing
favorable conditions, thereby reducing efficiency in a precise beamforming environment.

2.2 RRM activities at the UE side

In 5G NR, the UE plays an essential supporting role in both UL and DL scheduling while
the base station, denoted as gNodeB (gNB), is ultimately responsible for the scheduling
decisions. To enable efficient resource allocation and meet QoS requirements, the UE
must periodically provide accurate feedback to the gNB.

In the UL, the gNB schedules the transmissions of the UE. To facilitate this, the UE
sends Buffer Status Reports (BSRs), which inform the network of the amount of data
awaiting transmission. When the UE has data to transmit but no resources have been
allocated, it sends a Scheduling Request (SR) to the gNB so that it is aware that the
UE has data to be transmitted.

The UE also assists the gNB in measuring uplink channel quality through the transmis-
sion of Sounding Reference Signals (SRSs). This information is used by the network to
optimize uplink scheduling.

Additionally, the UE is responsible for logical channel prioritisation. When it has the
resources to transit, it has to decide how to distribute them among its active logical
channels. This decision is based on parameters such as Prioritized Bit Rates (PBRs)
and Logical Channel Group (LCG) priorities. [30]

Measurements

A key responsibility of the UE in RRM is performing measurement procedures. These in-
clude assessing signal quality both within the same frequency band (intra-frequency) and
across different frequency bands (inter-frequency). Examples of principal measurements
performed by the UE include:

= Synchronization Signal - Signal-to-Interface-plus-Noise Ratio (SS-SINR)

September 22, 2025 9 Instituto de Telecomunicacdes(IT)
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= Synchronization Signal - Reference Signal Received Power (SS-RSRP)

= Synchronization Signal - Reference Signal Received Quality (SS-RSRQ)

These measurements are conducted either periodically or in response to specific events,
such as when a neighboring cell offers better service than the current serving cell.

Apart from the measurements already mentioned, the UE oversees beam-specific mea-
surements in scenarios involving beamforming. It must report Layer 1 RSRP values for
individual beams, enabling the network to make informed decisions on beam manage-
ment and mobility.

To facilitate accurate and timely measurements, the UE may be configured with mea-
surement gaps. These gaps allow the UE to temporarily suspend data transmission
or reception to scan other frequencies or Radio Access Technologies (RATs) without
disrupting ongoing communication.

2.2.1 Mobility Management

Mobility Management (MM) consists of the UE's behaviour in both the idle and con-
nected states. In idle mode, the UE performs cell reselection autonomously based on
signal quality metrics and different priorities defined by the network. This process opti-
mizes the battery usage of the UE and ensures that it remains on the most suitable cell
all the time.

Meanwhile, in connected mode, the UE supports the network who controls the mobility
through measurement reporting. It evaluates the quality of the serving ang neighbouring
cells and report these findings to the network. Based on this information, the network
may initiate the handover towards a neighbour cell with better quality services. The
handover is performed by the UE which involve synchronizing with the new cell, per-
forming random access procedures and resuming data transmission with minimal delay
[31].

The UE has also the responsibility to detect and evaluate cells from other RATSs like
LTE or UMTS and support reselection if it is the case. This capability ensures seamless
service continuity across heterogeneous network environments.

In high-speed mobility scenarios, the UE must support fast and reliable transitions be-
tween cells and RATSs, including accurate timing, performing rapid measurements, and
executing handovers with minimal interruption to ongoing services [32].
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Radio Link Monitoring

Radio Link Monitoring (RLM) is a mechanism by which the UE assesses the quality of
the downlink connection. The UE monitors reference signals, which may be based on
Synchronization Signal Blocks (SSBs) or Channel State Information Reference Signals
(CSI-RS), to determine whether the link quality meets predefined thresholds. These
thresholds, known as Q.,: and Q;,, represent the minimum acceptable and re-entry
quality levels, respectively.

When the link quality is below Q,,: for a specific duration, the UE must report an
out-of-sync condition, indicating potential link failure. Otherwise, if the link quality is
above Q;,, the UE must report an in-sync condition, signalling recovery.

The layers involved in Radio Link Monitoring and how the flow of the messages can be
seen in figure 2.3.

MAC
1.Beam Failure Detection

2.Beam Failure Recovery

Configuration: Monitoring Resources
Qin/Qout threshald
In-sync / Out-sync Indication

Figure 2.3: Radio Link Monitoring

Conformance Requirements

The UE must meet a comprehensive set of conformance requirements to ensure per-
formance across devices and network deployments. These requirements are validated
through standardized test scenarios that simulate various operational conditions, includ-
ing different deployment architectures, frequency ranges and mobility scenarios.

The tests assess the UE’s ability to perform measurements, report accurately, main-
tain timing alignment, and respond appropriately to variations in link quality. Some
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requirements are evaluated using statistical methods, with confidence levels ensuring
the reliability of test outcomes.

Key performance metrics include measurement accuracy, reporting delay, handover ex-
ecution time, and link recovery duration [33].

Timing Accuracy

In UL transmissions, keeping precise timing is essential for the UE. The UE must align
its transmission timing with the DL transmissions timing of the serving cell using Timing
Advance (TA) commands received from the network. The initial transmission timing er-
ror must remain within strict limits, typically defined in terms of a timing error threshold
(Te) [34].

The UE has to adjust its timing in response to changes in the DL timing. These
adjustments must adhere to defined step sizes and rates, ensuring smooth transitions
without causing interference. The UE's ability to perform these adjustments is verified
through the transmission of SRSs, which serve as a reference for measuring timing
accuracy [35, 36].

2.3 Non-Coherent Schemes for MIMO systems

2.3.1 Grassmannian schemes

Grassmannian schemes are closely related to Unitary Space—Time Modulation (USTM) [37],
which is a coherent scheme that proposes composing constellations of symbols which
span several transmissions and spatial channels (antennas). USTM is optimal if the
coherence time T is bigger than the number of transmitting antennas M [38].

As long as the narrowband assumption is holds [4], the effect of the channel H on
an UTSM symbol can be modeled as a linear transformation. If the coherence time
is longer than the number of transmissions spanned by the USTM symbol, the linear
transformation exerted by the channel will be identical for all the rows (uses of the
channel) of the USTM symbol. Consequently, the subspace spanned by the columns
of the received USTM symbol is the same as that spanned by the columns of the
transmitted USTM symbol. Grassmannian modulation schemes exploit this property by
embedding information in the subspaces spanned by the USTM symbol columns, which
remain invariant to the channel H [39].

These schemes are typically designed for MIMO systems with relatively few antennas.
However, as the number of antennas increases, constellation design becomes computa-
tionally prohibitive. This scalability issue makes Grassmannian schemes a suboptimal
choice for ultra-massive MIMO systems.
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2.3.2 Energy-based schemes

Energy-based schemes for ultra-massive MIMO rely on the same principles as Amplitude
Modulation (AM) systems, i.e., they use only the amplitude of the transmitted signal
to transmit information. The way to use AM in multiple antenna systems consists of
averaging the received signal energy in each of the antennas of the system according
to [40]

1, o 1en, o
NHY” = sz’"l ) (2.6)
n=1

where y is the received signal and N is the number of receive antennas. This averaging
process exploits the channel hardening property of multi-antenna systems, whereby the
effective channel becomes increasingly deterministic as N grows. This helps mitigate
the problems AM systems have when dealing with fast fading channels.

While energy-based schemes exhibit attractive capacity scaling with increasing numbers
of antennas, they face challenges in multiplexing large numbers of users. This limitation
makes them less suitable for ultra-massive MIMO deployments, where the ability to
simultaneously serve very high numbers of users is a fundamental requirement.

2.3.3 Differential schemes

Differential schemes can be seen as an evolution of energy-based schemes, as they also
exploit the phase of the received signal, thereby achieving higher spectral efficiency.
These schemes rely on the assumption that the channel coherence time is greater than
twice the symbol duration, ensuring that the channel can be considered constant over
two consecutive symbols. This condition is typically satisfied in most wireless communi-
cation systems. Differential schemes exploit it by encoding information in the difference
between consecutive symbols. In this approach, the transmitted symbols are precoded
with the previously transmitted symbol:

x[n] = x[n—1] s[n], n>1, (2.7)

where x[n] is the transmitted symbol at time n, and s[n] is the information symbol being
differentially encoded. The first transmitted symbol is predefined and serves as the
starting point of the differentially encoded chain. Decoding is performed by multiplying
the received symbol by the complex conjugate of the previously received symbol:

z[n] = y[n —1]" y[n], (2.8)

where z[n] is the decoded symbol and y[n] is the received symbol at time n. It is impor-
tant to note that there is no error propagation thanks to (2.8) being only dependent on
two consecutive received symbols (rather than previously decoded symbols). Differential
modulation and demodulation can also be done in the frequency domain by applying
the encoding across contiguous OFDM subcarriers [2].
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Several adaptations of differential schemes to MIMO systems have been proposed, with
the first being Differential Unitary Space—Time Modulation (DUSTM) [37, 41]. This
modulation scheme, like Grassmannian signaling, uses USTM symbols. The difference
is that here, instead of coding information into subspaces, the information symbols are
transmitted through differential USTM symbols according to

X, =S, X,_,, (2.9)

where X, € CM*M s the 7" transmitted DUSTM symbol, with M denoting the num-
ber of transmitting antennas, and S, € C"*M is the 7" USTM information symbol.
Equation (2.9) is no more than the USTM expansion of (2.7), and thus requires the
coherence time to be at least twice the symbol duration. In the case of USTM, this
spans 2M transmissions. As a result, the higher the number of antennas (and therefore
transmissions) used by the USTM symbol, the higher the coherence time of the channel
must be in order to maximize the throughput. Because of this, in DUSTM, the condi-
tion T > 2M must be met [42]. This limitation, together with the user multiplexing
problems of USTM, makes this scheme a suboptimal choice for ultra-massive MIMO.

Problems with multiplexing multiple users and high computational complexity also af-
fect Differential Space-Time Block Codes (DSTBC), the differential counterpart of the
Alamouti scheme [43], making them unsuitable for ultra-massive MIMO systems.

Another adaptation of (2.8) to MIMO systems consists on averaging across the receiving
antennas in order to exploit channel hardening [44]

210 = 5 il = 'l (2.10)

The effect of channel hardening provides significant noise and interference reduction,
which scales with the number of receiving antennas N. Moreover, the simplicity of (2.10)
enables efficient operation with large antenna arrays without requiring excessive com-
putational resources.

However, a major drawback of all differential schemes is that they require constellations
whose points form a closed group under matrix multiplication; in other words, the prod-
uct of two constellation points must also belong to the constellation. Otherwise, (2.7)
would generate symbols outside the intended set. This restriction forces differential
schemes to rely on M-PSK constellations, which considerably limits their performance
at high SNR compared to coherent schemes that can employ high-spectral-efficiency
QAM constellations.

Among all non-coherent schemes, differential non-coherent modulation based on av-
eraging is the best non-coherent modulation scheme for ultra-massive MIMO. This is
because of its low computational complexity, together with its attractive performance
scaling with increasing numbers of antennas.
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Figure 2.4: Summary of Non-Coherent Schemes [1]

Figure 2.4 summarizes the main non-coherent schemes. Differential approaches stand
out for their simplicity and scalability in scenarios with large antenna arrays and contin-
uous waveforms, provided that the channel coherence time is at least twice the symbol
duration.

2.4 Use of Al in RRM & Scheduling

Recent advancements in 5G networks have underscored the critical need for flexible and
open architectures that can seamlessly integrate Al-native procedures and protocols.
Traditional network architectures often impose constraints on scalability, interoperabil-
ity, and the rapid deployment of intelligent solutions. In this context, Open Radio Access
Network (O-RAN) emerges as a transformative paradigm that fosters modularity, open-
ness, and vendor diversity, creating an ideal platform for the adoption and acceleration
of Al-driven innovations. This section explores the role of O-RAN in enabling the
integration of Al-native protocols to enhance network performance, adaptability, and
automation [45].

The Medium Access Control (MAC) layer in 5G networks plays a critical role in re-
source scheduling and allocation. Al-native MAC protocols utilize advanced Reinforce-
ment Learning (RL) algorithms to adaptively schedule radio resources, taking into ac-
count dynamic traffic patterns, user mobility, and interference conditions. Such adaptive
scheduling improves throughput, latency, and fairness in multi-user scenarios.
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Furthermore, Al-empowered Dynamic Spectrum Access (DSA) protocols enable real-
time detection and exploitation of available spectrum holes, boosting spectral efficiency,
especially in dense urban deployments.

Al-native Routing and Control Protocols

Efficient routing in heterogeneous 5G networks is challenged by diverse service require-
ments and fluctuating network conditions. Graph Neural Networks (GNNs) have been
proposed to model network topologies and predict link quality, enabling intelligent,
adaptive routing that dynamically balances loads and minimizes congestion [46].

RL-based distributed control agents continuously update routing policies to optimize
end-to-end network performance.

Al-native Network Management Protocols

Al-native network management incorporates Al for tasks such as fault detection, QoS
and QoE prediction, and configuration management. Federated Learning (FL) frame-
works enable distributed Al model training across multiple RAN nodes without central-
izing sensitive user data, thus preserving privacy while improving model accuracy.

Such Al-native management techniques lead to proactive maintenance, dynamic re-
source allocation, and automated network optimization [47].

Al-native Security Protocols

Al-native security protocols embed machine learning algorithms to detect anomalies, in-
trusions, and attacks in real-time. The systems employ Al to dynamically adapt security
policies and countermeasures. However, the vulnerability of Al models to adversarial
attacks requires robust defense mechanisms to ensure network reliability and trustwor-
thiness [48].

Disaggregated Architecture and Open Interfaces

O-RAN architecture decomposes the traditional RAN into Central Unit (CU), Dis-
tributed Unit (DU), and Radio Unit (RU), interconnected through standardized open
interfaces such as F1, E2, and Al, as defined by the O-RAN Alliance [49].

This disaggregation allows multi-vendor deployments and facilitates integration of Al-
native components at various functional points in the network.
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RAN Intelligent Controller (RIC)

The RIC is a key enabler of Al-native functionality within O-RAN, divided into two parts:

= Near-Real-Time RIC (near-RT RIC): Operates at latency scales between 10 ms
and 1 s, hosting xApps that execute Al-native control functions such as adaptive
scheduling, beamforming, interference management, and mobility optimization.
These xApps use RL and other Al methods to optimize radio resources dynamically.

= Non-Real-Time RIC (non-RT RIC): Works at timescales beyond 1s and hosts
rApps responsible for Al/ML model training, network analytics, policy manage-
ment, and lifecycle management of Al applications [50]. FL techniques enable
distributed, privacy-preserving model training across network nodes.

Al-native xApps and rApps

xApps and rApps represent the programmable Al-native applications that realize the
intelligence of the RIC. While xApps focus on near real-time control, reacting to im-
mediate network events, rApps provide strategic, long-term optimization, monitoring Al
model performance, and updating policies accordingly.

A generic framework for RAN intelligence can be seen in figure 2.5. The data is collected
in the cloud, where it is trained and the model is sent back for real-time implementations.
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Figure 2.5: Generic Framework for RAN Intelligence

Compliance with 3GPP Standards

O-RAN Al-native procedures conform to 3GPP Release 18 specifications, including the
Network Data Analytics Function (NWDAF) framework for standardized data collection,
analytics, and Al service orchestration.
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This standardization ensures interoperability, vendor-neutral deployments, and scalability
of Al-native solutions in commercial networks.

2.4.1 Key Al-native Methods and Algorithms

To enable intelligent and autonomous behavior in next-generation wireless systems,
various Al-native methods and algorithms have been integrated into different layers
of the network architecture. These techniques offer powerful capabilities in learning,
adaptation, prediction, and decision-making, particularly in highly dynamic and resource-
constrained environments like O-RAN. This section highlights key methods, ranging from
reinforcement learning and federated learning to graph-based models and transformer
architectures—that are shaping the design and operation of Al-native protocols.[45]

Reinforcement Learning (RL) and Deep RL

RL allows agents to learn optimal policies through interactions with the environment,
receiving rewards or penalties. Deep RL uses deep neural networks to handle complex
state spaces, making it suitable for real-time network control challenges like adaptive
scheduling and handover decisions in O-RAN.

Federated Learning (FL)

FL distributes Al model training across multiple RAN components, enabling collabora-
tion without exposing raw data, crucial for user privacy. FL is applied in non-RT RIC
rApps for predictive maintenance, fault detection, and network optimization.

Graph Neural Networks (GNNs)

GNNs effectively model the network topology as graphs, capturing spatial relationships
and dependencies. They are utilized for adaptive routing, link quality prediction, and
anomaly detection, which are critical for maintaining network performance in dynamic
conditions.

Transformers and Large Language Models (LLMs)

Emerging use of transformer architectures in network management tasks enables han-
dling complex temporal dependencies and automated policy formulation. LLMs assist in
generating natural language explanations for Al decisions and enabling intuitive network
control interfaces.[51]
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2.4.2 Case Studies and Projects

While Al-native procedures and protocols have been widely discussed in theoretical and
architectural contexts, several real-world initiatives are actively implementing these con-
cepts. This section presents selected case studies and research projects that demonstrate
how Al is being integrated into current and future wireless systems, from O-RAN deploy-
ments and 6G research to standardization efforts within 3GPP. These examples provide
practical insights into the maturity, challenges, and directions of Al-native networking.

O-RAN and the Role of RIC

The O-RAN Alliance's RIC concept implements Al-native control by hosting xApps
and rApps that apply Al/ML techniques in near real-time and non-real-time scenar-
ios, respectively. These applications enable dynamic, autonomous control of network
resources, improving performance and reducing operational costs [52)].

6G Research Projects

Leading projects such as Hexa-X [53] explore Al-native techniques for ultra massive
MIMO systems with positioning information integration, focusing on improving spatial
multiplexing, beamforming, and latency-sensitive scheduling.

3GPP Standard Contributions

3GPP Release 18 introduces enhancements to support Al-native procedures, includ-
ing standardized data models and analytics interfaces within NWDAF, essential for Al
orchestration and cross-vendor compatibility [54].

2.4.3 Open Challenges and Future Directions

Despite progress, several critical challenges remain for Al-native procedures in current
systems:

» Explainability and Interpretability: Al-native decisions must be transparent and
explainable to network operators to build trust and facilitate debugging.

» Data Quality and Availability: Scarcity of labeled training data and heteroge-
neous data sources complicate effective Al model training, especially in federated
settings.
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» Real-time Constraints: Near-RT RIC operations demand Al methods that satisfy
stringent latency requirements while maintaining high accuracy.

» Robustness to Adversarial Attacks: Ensuring Al models are resilient to malicious
manipulations is vital for network security.

» Interoperability and Standardization: Integrating Al-native protocols seamlessly

across multi-vendor and legacy systems remains a complex task.

Future research is poised to focus on the fusion of Al-native protocols with edge com-
puting, optimization of Al lifecycle management, and extension of Al-native principles
to 6G technologies such as terahertz communications and integrated sensing.
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Chapter 3

Planned Activities on RRM and
Scheduling

3.1 Research Directions at the UE Level

The evolution from 5G to 6G is expected to bring transformative changes to wireless
communications, particularly through the use of terahertz frequencies and the adoption
of ultra-massive MIMO (UmMIMO) technologies. While much research has focused on
base station capabilities, the UE side presents equally critical challenges and opportu-
nities for meeting the demands of 6G networks, including higher data rates, ultra-low
latency, and enhanced reliability.

With sub-terahertz frequency bands, the wavelength becomes small enough to allow
miniaturization of antenna elements and their integration into compact UE designs.
Smaller antennas enable larger arrays, which in turn increase spectral efficiency and
support higher data rates. Furthermore, beamforming can enhance transmit power effi-
ciency, improve robustness against fading and noise, and strengthen interference man-
agement. The implementation of hybrid beamforming techniques is essential to address
the high path loss and directional propagation characteristics of sub-THz signals [55].

The design of antenna array configurations and the selection of appropriate modula-
tion schemes are crucial for optimizing performance while maintaining energy efficiency.
To achieve the high throughput targets of 6G, the UE must support multiple indepen-
dent data streams, which requires sophisticated spatial multiplexing techniques. This, in
turn, demands precise control over antenna geometry, inter-element spacing, and beam-
forming capabilities to minimize interference and maximize channel capacity. Moreover,
the modulation schemes must be adaptive, capable of dynamically adjusting to channel
conditions to balance spectral efficiency and power consumption. Higher-order modu-
lations such as 256-QAM or beyond may be employed under favorable conditions, while
lower-order schemes ensure robustness in challenging environments. Together, these de-
sign choices enable UEs to sustain high data rates without compromising battery life or
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thermal stability, which are critical for mobile and wearable devices operating in dense,
high-frequency 6G networks [56].

UmMIMO operations demand high-speed signal processing and multiple RF chains which
will increase the power consumption significantly. Battery life in mobile devices and
thermal dissipation, especially in compact enclosures, need to be considered. Moreover,
the integration of these elements in the UE will make the signal processing and hardware
design more complex. Currently, there are studies related to to optimize the spectral
efficiency while minimizing the energy consumption of the communication system and
Towards Power Efficient 6G Sub-THz Transmission [57, 58].

In 6G networks, integrating advanced sensing and localization capabilities into UEs will
be pivotal, especially for immersive technologies such as augmented reality (AR) and
virtual reality (VR). These applications demand centimeter-level localization accuracy
to ensure seamless alignment between digital content and the physical environment.
Sub-terahertz frequencies, with their short wavelengths and high spatial resolution, of-
fer the potential for ultra-precise positioning. By leveraging joint communication and
sensing (JCAS) techniques, 6G UEs can simultaneously transmit data and extract envi-
ronmental information, enabling real-time tracking of user movement and surroundings.
This precision is essential for minimizing motion-to-photon latency and avoiding spa-
tial disorientation in AR/VR experiences. Furthermore, accurate localization enhances
context-awareness, allowing devices to adapt content dynamically based on user position
and orientation, which is critical for industrial, medical, and entertainment applications
in the 6G era.

As 6G networks push into higher frequencies and more directional communication
paradigms, ensuring robust security and privacy at the user equipment level becomes in-
creasingly critical. The use of sub-terahertz bands and ultra-massive MIMO introduces
new vulnerabilities but also opens opportunities for physical layer security techniques that
exploit the unique characteristics of the wireless channel. For instance, beam-based com-
munication enables spatial confinement of signals, reducing the risk of eavesdropping
and unauthorized access. Additionally, location-aware encryption and channel-based key
generation can provide lightweight, context-sensitive security mechanisms that are well-
suited for mobile and resource-constrained devices. These innovations are particularly
important in dense urban environments and for applications involving sensitive data,
such as healthcare, finance, and industrial automation. As 6G UEs become more intel-
ligent and interconnected, embedding security into the physical and MAC layers will be
essential to protect user data and ensure trust in next-generation wireless systems [59].
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3.2 Research directions for Non-Coherent Systems

Multi-user non-coherent schemes

Initial MIMO schemes were designed with the goal of maximizing capacity in a single-
user MIMO setup. Non-coherent modulation schemes are no exception and such is the
case of Grassmannian schemes, DUSTM, and STBC. However, these schemes do not
scale well with increasing numbers of users, and become unfeasible with the expected
number of multiplexed users in UmMIMO. As a result, conceptually simpler schemes, like
energy-based and differential schemes based on averaging are more desirable. Among
these, differential averaging schemes are particularly attractive because they exploit the
phase of the incoming signal, making them more robust and enabling the possibility of
spatial processing.

The extension of differential schemes based on averaging to a multi-user scenario has
been done by multiplexing users in the constellation domain, in a similar manner to
multi-user energy based schemes but with the advantage of having the complex plane
(a two-dimensional space), instead of just the received energy (a one-dimensional space).
The symbols transmitted from several users will sum over the air, forming joint symbols
z[n] (as shown in Figure 3.1), which stem from the extension of (2.10) to the multi-user
case as

2] =2 33 yiln - Uyl

: k;l i,:Vl (3.1)
=5 S Il Bisilo] + ([,
k=1 i=1

where K is the total number of users, hy; is the complex channel coefficient from user
k to antenna i, [ is the transmitted power by user k, and ( represent the interference
and noise terms. It can be shown that, if the different users have uncorrelated channels,
( decreases as N increases [44].

The joint constellation (as the one from Figure 3.1) must be known by the receiving
base station to assign the correct bits to each user. On top of that, stable power control
is required by the user terminals being multiplexed, so that the joint constellation does
not degrade excessively.

In summary, the main differences between the coherent and the non-coherent RRM
optimization problem are:
= More resource elements (REs) in the OFDM grid are available for data transmis-
sion in non-coherent schemes, since no pilots are required.

= Spatial layers and beam resources are lost due to the absence of a channel sensing
protocol.

September 22, 2025 23 Instituto de Telecomunicacdes(IT)



MiFuture, Grant Agreement Number: 101119643 D3.1 RRM & Scheduling

Individual constellation UE 1

*
*
: Joint-constellation at the BS
- e [JEPp—— > A
1 : 1 \ @177 W
x e E o =
Individual constellationUE2 - ccicimimimo Ir ——————————————
4 1707 @ ; [ 1707
1 0.707] L 4 Ao A
® i | i
! ©-1.707) A
o707 . 0707 '
* A \
i-0.707

Figure 3.1: Example of a joint constellation for two users from [2].

= Users can be multiplexed in the constellation domain [60].

= Data from the same user cannot be scattered across the OFDM grid, as (2.7)
requires the channel to remain constant, which is only a reasonable assumption
for contiguous time-frequency resources.

RRM for non-coherent systems

Radio Resource Management in non-coherent schemes shares its objectives with coher-
ent RRM, i.e., maximize the amount of data transmitted by the system while maintaining
a minimum QoS for all users.

Provided the users have spatially uncorrelated channels, non-coherent differential mod-
ulation offers the possibility of constellation multiplexing [60]. This form of multiplexing
does not scale well with the number of users, due to the points of the joint constellation
being very close to each other. To deal with this, constellation multiplexing can be
combined with scheduling users in orthogonal time-frequency resources. For instance,
[61] demonstrates the benefits of combining constellation multiplexing with TDMA, but
it does not address the fundamental limitation of non-coherent schemes being restricted
to M-PSK constellations, which significantly limits throughput at high SNR compared
to coherent schemes.

To mitigate the lack of spatial resources that non-coherent systems suffer from, [62]
proposes a passive spatial filtering approach for Rician fading that enables the exploita-
tion of spatial resources without any previous knowledge of the channel, which removes
the need for constellation multiplexing and allows for more separation between constel-
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lation points. The angles of the different users are part of the constraints of the RRM
procedure and, since the sensing in [62] is completely passive, the angles can be known
during the initial connection of each user with the BS through the RACH procedure,
which happens before the scheduling of data time-frequency resources. This can provide
useful information for the RRM process. Despite its promising results, passive spatial
filtering is limited to Rician channels, i.e., scenarios with a dominant line-of-sight (LOS)
component. This makes it less practical for real-world deployments, where users are
expected to switch seamlessly between Rayleigh (NLOS) and Rician (LOS) conditions.
Multiplexing users in the angular domain under Rayleigh fading is significantly more
difficult and remains an open research challenge.

Finally, as in coherent communications, spatially correlated channels are undesirable,
since neither constellation multiplexing (3.1) nor spatial filtering an be effectively ap-
plied. Therefore, one viable RRM strategy is be to group users that have a substantial
spatial separation between them in the same time-frequency resources, while reserving
orthogonal subcarriers or time slots for users that suffer from high spatial correlation.

3.3 Research Direction at Al-native techniques

Al-native Scheduling for Ultra Massive MIMO

Efficient resource scheduling in UM-MIMO systems requires managing large antenna
arrays and diverse user demands in real time. Traditional rule-based scheduling methods
become infeasible due to the complexity and scale. Al-native scheduling uses advanced
RL and Deep RL to dynamically allocate resources by learning from environmental
feedback, improving throughput, and reducing latency. Positioning information further
enhances scheduling decisions by predicting user mobility and channel quality variations,
enabling proactive resource allocation and improved reliability. Recent studies have
shown that Al-driven scheduling methods outperform classical approaches, especially in
dense urban and highly mobile scenarios [63].

Al-native Beamforming in Ultra Massive MIMO

Beamforming is vital for focusing transmissions and minimizing interference in Um-
MIMO. However, the large antenna count complicates real-time beam management.
Al-native beamforming utilizes deep learning techniques such as Transformer models
and GNNs to infer optimal beam patterns from channel state and positioning data.
These models enable faster and more accurate beam selection compared to traditional
optimization algorithms, and they adapt to dynamic propagation conditions effectively.
Leveraging positioning allows beamforming to anticipate user movements and adjust
beams proactively, enhancing link stability and throughput [64].
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Al-native Channel Estimation for Ultra Massive MIMO

Channel estimation in UmMIMO suffers from pilot contamination and high training
overhead due to massive antenna arrays. Al-native methods employ machine learning
models that capture spatial-temporal correlations in channel data, reducing pilot signal
requirements while maintaining high accuracy. FL frameworks facilitate decentralized
training across multiple nodes, preserving user privacy and scaling efficiently.

Incorporating positioning information further refines channel models by relating physical
user locations with propagation characteristics, aiding in handling blockage and multi-
path effects [65]. Experimental evaluations confirm that Al-native channel estimators
outperform conventional methods under diverse and dynamic channel conditions.

Integration of Positioning in Al-native Ultra Massive MIMO Protocols

Positioning plays a pivotal role in enhancing Al-native UmMIMO procedures. Joint
communication and sensing paradigms allow fusion of location, velocity, and environ-
mental context data with network information, improving scheduling, beamforming,
and channel estimation decisions. This synergy enables ultra-reliable and low-latency
communications by facilitating faster handovers, better interference management, and
dynamic resource optimization. Leading 6G research projects emphasize the integra-
tion of positioning to realize fully Al-native UmMIMO systems capable of adapting to
complex environments [66]

Conclusion

Al-native techniques that incorporate positioning information are essential to meet the
stringent performance demands of UmMIMO in future wireless networks. These tech-
niques enable adaptive scheduling, intelligent beamforming, and efficient channel esti-
mation, addressing challenges posed by large antenna arrays and user dynamics. Future
work should focus on developing scalable Al models with enhanced privacy features
and deep integration of sensing and positioning capabilities to achieve next-generation
communication goals.

3.4 Research Directions in Spatial Resource Alloca-
tion and AP selection

Spatial resource allocation can be achieved through the design of beamforming vec-
tors, the selection of suitable APs for these beamforming vectors, and optimized power
allocation and scheduling, all supported by accurate user positioning.
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User position can be estimated using either distance-based or angle-based approaches.
The simplest method involves Time Difference of Arrival (TDoA) combined with the
Least Mean Squares (LMS) technique, which provides accurate and fast results with low
complexity, but is not well-suited for continuous user tracking. For mobility scenarios,
filtering techniques such as Kalman and Extended Kalman filters can be employed.
Since beamforming design often benefits from angular information, Angle of Arrival
(AoA)-based methods are particularly useful.

Once the user’s position is known, beamforming vectors can be designed by incorpo-
rating channel conditions. This can be accomplished by analyzing eigenvalues in the
joint eigenspace of users and APs. Based on these eigenvalues, the most suitable APs
can be selected, thereby reducing the overall network complexity. Subsequently, power
allocation from each AP to the user can be optimized to maximize efficiency and per-
formance.

Figure 3.2 illustrates a scenario where each user is connected to multiple APs, which
contribute different amounts of power and direct their beams accordingly. Some APs
provide lower power contributions, while others contribute more, depending on the
channel conditions between the AP and the user.
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Figure 3.2: lllustration Scenario

Figure 3.3 shows the power required from APs when all the APs are connected to
serve the user. Connecting all the APs increases complexity and computation, thus it
is benefecial to effectively select only the optimal subset of APs which would jointly
serve the user. For instance, AP-6 contributes significantly only to User-3, while its
contributions to other users are negligible. Since each AP has a total power budget,
forcing AP-6 to serve users with poor channel gains would require disproportionately
high transmit power. A more efficient strategy is to deactivate AP-6 for those users
and concentrate its available power on User-3, where the channel gains are stronger, as
transmit power is proportional to the square of the signal amplitude.
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UE vs Power for 6 APs and 5 Users UE vs Power for Selected APs and 5 Users
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Optimised Power and AP selection

As shown in Figure 3.4, low-contributing APs are switched off, and only APs that
provide effective beamforming for each user remain active, while still meeting user QoS
requirements. This optimization is possible by leveraging user location, channel gains,
and beamforming vector design.

In summary, incorporating user location into spatial resource allocation allows more
effective planning, reduces the overall network burden, improves latency and throughput,
and enables dynamic and energy-efficient resource allocation.

Conclusion

With the support of state-of-the-art methods, we are exploring new directions such as
integrating sensing and localization capabilities into UE to enable advanced applications
like AR and digital twins through JCAS. For 6G to reach its full potential, extensive
research is required on non-coherent systems, including the design of energy-based and
differential schemes. Equally important is the development of advanced beamforming
and resource allocation strategies, such as eigenvector-based methods, which can make
effective use of user location information. Achieving these goals also depends on Al-
native techniques, which can be leveraged to estimate channel models and anticipate
scheduling needs. Together, these research directions are complementary and essential,
forming a roadmap toward the successful realization of 6G and cell-free systems in the
coming years.
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