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Chapter 1 

 

1. Introduction 

Future wireless communication systems are expected to support unprecedented levels of 

connectivity, reliability, and service diversity, driven by emerging applications such as high-

accuracy localization, integrated sensing and communication, and cell-free network architectures. 

Achieving these requirements using conventional rule-based signal processing and protocol design 

has become increasingly challenging in highly dynamic, dense, and heterogeneous radio 

environments. In this context, artificial intelligence (AI) has emerged as a key enabler for 

redesigning wireless system procedures and protocols toward adaptive and learning-driven 

operation. 

At the physical layer, AI-based channel estimation represents a fundamental procedure that 

directly impacts beamforming, localization, sensing, and resource allocation. By leveraging data-

driven inference, AI-based channel estimation can reduce pilot overhead, improve robustness 

under mobility, and mitigate model mismatch in complex propagation environments, providing a 

reliable foundation for higher-level wireless functionalities. 

Building upon accurate channel knowledge, phase-only positioning with deep learning enables 

high-precision localization using phase information as a compact and hardware-efficient feature 

set. Learning-based phase processing relaxes calibration requirements and enhances robustness 

against noise and environmental dynamics, extending the role of AI from communication 

performance optimization to context-aware wireless services. 

In parallel, the convergence of communication and sensing has led to growing interest in joint 

communication and sensing (JCAS) architectures. Neural-network-integrated multistatic sensing 

for cell-free JCAS systems enables cooperative sensing, distributed data fusion, and intelligent 

interpretation of multistatic measurements across geographically separated nodes. Such AI-driven 

sensing procedures are particularly relevant in dense and cell-free deployments, where 

coordination among multiple access points is essential. 

At the network level, the deployment and coordination of these AI-driven procedures are enabled 

by AI procedures and protocols in Open Radio Access Network (Open RAN) architectures. Open 

RAN provides disaggregated, programmable, and standardized interfaces that support the 

integration, orchestration, and lifecycle management of AI models across real-time and non-real-

time control loops, enabling scalable, interoperable, and AI-native wireless network operation. 

This document presents the initial work of MiFuture Doctoral Candidates and their supervisors in 

AI-aided channel estimation, localization and sensing, and their feasibility of integration with the 

ORAN architecture. 
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Chapter 2 

 

2. AI-Based Channel Estimation 

As the number of users and connected devices in the Internet of Things (IoT) continues to rise, 

and  as many applications demand higher data rates and lower latency, the motivation for 

integrating  artificial intelligence (AI) into 6th Generation (6G) networks becomes increasingly 

compelling. AI can  assist in handling highly complex communication tasks, including signal 

detection, channel estimation,  beamforming, sensing, and other sophisticated processes [1]. These 

capabilities are particularly critical  as 6G aims to support ultra-reliable, low-latency, and high-

capacity services. One of the central components we aim to enhance in 6G is sensing and channel 

estimation, especially in applications such  as autonomous driving and wearable devices [2]. By 

leveraging AI, these tasks can be performed more  efficiently and accurately, enabling better 

overall system performance and user experience. 

Traditional channel estimation methods, such as Least Squares (LS) and Linear Minimum Mean 

Square Error (LMMSE), face clear limitations in these scenarios. For example, LS often requires  

transmitting a larger number of pilot symbols, which reduces the effective data rate. LMMSE, on  

the other hand, requires that the receiver has prior knowledge of the channel and noise statistics 

and  introduces significant computational complexity, making it less suitable for real-time or large  

scale IoT  systems [2]. These constraints highlight the need for more adaptive and intelligent  

approaches capable of coping with dynamic wireless environments. 

Studies show that even a lightweight one-dimensional convolutional neural network (1-D CNN) 

used  as a post-processing unit after conventional channel estimation can yield significant 

improvements, such  as a 30% reduction in residual carrier-frequency-offset (CFO) error. This  

evidence motivates the use of AI in channel estimation through several possible approaches [3]: 

Deep-learning-based algorithms can dynamically allocate pilot symbols online based on the  

channel  condition and available system resources, thereby reducing overhead while maintaining 

high performance. 

Learning-based methods can adaptively correct offsets by capturing and modeling the noise  pattern 

over time. 

End-to-end models can jointly perform channel estimation, offset correction, and angle-of-arrival  

(AoA) estimation within a single processing block. 

AI-based approaches can enable scaling of the system to massive multiple-input multiple-output 

(MIMO) configurations for multi-user scenarios. 

Data-driven models can be trained on real-world measurements to ensure that the proposed 

methods remain effective and robust in practical deployment scenarios.  To this end, many studies  

have explored the use of machine-learning (ML) and deep-learning  (DL) methods for channel 
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estimation. One approach treats the channel matrix as a two-dimensional  (2D) image and 

formulates the estimation task as an image-processing problem [4]. Another line  of research 

applies conventional pilot-based channel estimation and performs interpolation using a  Super-

Resolution Convolutional Neural Network (SRCNN) [5, 6]. Other methods combine CNNs for 

initial channel estimation with recurrent neural networks (RNNs) to leverage temporal 

correlations  and  predict channel evolution over time [7]. These methods demonstrate that deep 

learning can provide  substantial improvements over traditional techniques, particularly in 

dynamically varying wireless channels. 

 

Fig. 1: XAI-based channel estimation method. Model N identifies the relevant and irrelevant subcarriers  

for channel estimation, guiding the DL-based utility model [8]. 

 

However, the blind application of deep-learning models is not fully reliable in the context of  

wireless  communication, as it is crucial to understand how a model makes its decisions. In [2], the  

authors  raise three critical questions that challenge the current use of DL models in wireless 

systems: 

”Is there a way to better select the DL black-box high-dimensional model inputs?” 

”Is there a real need for such high-complex architectures?” 

”Is there a way to provide interpretability to the decision-making strategy employed DL  black box  

mod- els?” 

This is where the use of explainable artificial intelligence (XAI) becomes particularly relevant. 

The fundamental idea behind XAI is to provide a clear explanation of why a DL model produces 

a  particular prediction. It is not enough to justify the decisions of the model; we must also be able  

to  interpret them reliably. This capability is essential to build trust in AI-based systems, especially 

in safety-critical and sensitive applications such as AI-assisted remote surgery [2]. 

Two primary methods are commonly employed to design XAI models: perturbation-based and 

gradient-based approaches. In the perturbation-based approach, the model is analyzed by 

systematically  modifying and perturbing input features and observing how these perturbations 

affect the model’s  output. In the gradient-based approach, the gradient of the output with respect  
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to the input is backpropagated  to assess the importance of each input feature, providing insight 

into the decision-making process of the network [2]. 

XAI-trained models can also be classified into two categories: model-agnostic and model-specific. 

In the model-agnostic case, the XAI training process does not rely on the internal structure or 

weights  of the original network. In contrast, model-specific approaches build the interpretability 

mechanism  based on the particular architecture, parameters, and learned weights of the already 

trained model [2]. 

In [8], the authors introduced XAI into wireless communications for the first time in the context  

of  channel estimation. They employed a model-agnostic, perturbation-based XAI method to 

estimate the  wireless channel in an orthogonal frequency-division multiplexing (OFDM) system. 

Their proposed  channel-estimation algorithm is illustrated in Fig. 1. The core concept is to train a 

model, referred to as Model N, to identify which subcarriers are relevant or irrelevant for channel 

estimation. This model  operates alongside a conventional DL-based utility model built using a 

feedforward neural network  (FNN). During training, intentional noise is added to the subcarriers. 

By minimizing the loss function, the model learns which subcarriers do not contribute to accurate 

estimation and should therefore  be ignored. This approach enhances system performance in terms 

of bit-error-rate (BER) while also  reducing computational complexity, as fewer subcarriers need 

to be considered for channel estimation. 

 

 

 

 

 

 

 

 

 

 

 



MiFuture, Grant Agreement Number:101119643                                                                        D3.2 AI procedures and protocols 

 

December 2025              Page 9 de 21    VOIS + UC3M 

 

 

Chapter 3 

 

3. AI-Driven Localization and Sensing with Deep Learning 

This chapter summarizes a set of artificial intelligence (AI) contributions to high-precision  

positioning and joint communication and sensing (JCAS) in next-generation cell-free/distributed 

MIMO systems. The attached works focus on (i) carrier phase positioning (CPP) using phase-only  

measurements, avoiding time-of-arrival requirements, and (ii) neural network (NN)-based  

multistatic sensing for joint angle-of-arrival (AoA) and angle-of-departure (AoD) estimation in 

cell-free JCAS. Across the four papers, deep neural networks are used to: 

• resolve integer ambiguities inherent to phase-only positioning with much lower 

complexity than maximum-likelihood estimation (MLE), 

• provide failure-tolerant positioning in the presence of antenna faults, 

• maintain centimeter-level accuracy under phase synchronization errors via NN-based 

access point (AP) selection, 

• enable scalable multistatic sensing for joint AoA/AoD estimation from communication  

signals. 

 

3.1 Deep Learning for Integer Ambiguity Resolution 

In distributed CPP, APs observe only carrier phases of the user equipment (UE) signal (Fig. 2). 

The corresponding range information is ambiguous by integer multiples of the wavelength. 

Classical MLE resolves these ambiguities by a dense grid search over the deployment region, 

which is computationally prohibitive. To address this challenge, two deep learning approaches are 

proposed. A multi-layer perceptron (MLP) directly maps differential phase measurements to the 

2D UE position. A second, hybrid architecture first estimates integer ambiguity labels using a 

neural classifier and then refines the position using a convolutional neural network (CNN) driven 

by both phase measurements and the predicted ambiguities. 

 

Fig. 2: Uplink positioning with distributed APs where only the carrier phase measurements at different 

APs are used to estimate the UE position. 
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Both models are trained in supervised fashion using synthetically generated measurements over 

random UE positions. Mean-squared error loss is used for regression, and sparse categorical cross-

entropy is used for ambiguity classification. Network pruning is applied after initial training to 

remove low-magnitude weights and further reduce inference complexity. 

In a scenario with 20 APs and carrier frequencies of 800 MHz and 1.8 GHz, the CNN-based 

approach achieves centimeter-level accuracy while reducing complexity by two to three orders of 

magnitude compared with MLE. As shown in Fig. 3, typical 95th-percentile positioning errors are 

on the order of 2–3 cm at a transmit power of 0 dBm, illustrating that phase-only CPP with deep 

learning can match or surpass the accuracy of more traditional time-based methods, without 

requiring clock synchronization. 

 

Fig. 3: ECDF of the proposed NN at a transmit power of 0 dBm. 

 

3.2 Failure-Tolerant Phase-Only Indoor Positioning 

A second contribution extends phase-only CPP to indoor deployments with hardware impairments, 

in particular antenna element failures at the APs. In this case, differential phase measurements are 

affected both by noise and by the failure pattern, which can significantly degrade position estimates 

if not handled explicitly. The proposed architecture combines a neural differential ambiguity 

estimator with a gradient descent based geometric solver. The estimator is implemented as an MLP 

with a shared trunk and multiple parallel output branches, each branch predicting the probability 

distribution over integer ambiguities associated with a particular AP pair. The most likely 

ambiguity labels are then fed into a hyperbola-intersection based solver that refines the UE position 

by minimizing a quadratic cost function between estimated and geometry-induced differential 

distances. Training data covers both fault-free and failure scenarios, with different numbers of 

failing APs and multiple transmit power levels. This protocol allows the network to learn robust 

features that generalize across hardware conditions. As shown in Fig. 4, the resulting scheme 

achieves sub-centimeter to low-centimeter accuracy in a realistic indoor layout, even when several 

APs are in failure. Reported 95th-percentile positioning errors remain below approximately 2 cm 
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over a wide range of transmit powers and AP failure probabilities. At the same time, the overall 

FLOP count is reduced by roughly 20–30% compared with earlier NN-based baselines, while 

being orders of magnitude lower than MLE. A threshold test on the final cost value also enables 

reliable AP-failure detection, providing a simple integrity monitoring mechanism. 

 

Fig. 4: ECDF of the proposed approach and NN approaches in previous work at a transmit power of 0 

dBm. The previous work benchmark performance assumes failure-free data (pf = 0). 

 

3.3 Phase Synchronization Errors and AP Selection 

A third study investigates phase-only positioning under phase synchronization errors between  the  

APs and a central location management function (Fig. 5). Random phase perturbations are added  

to the ideal measurements, representing practical synchronization imperfections. 

The underlying hyperbola-intersection method remains the core positioning engine, but an 

additional MLP is introduced to perform intelligent AP selection. Instead of using all ambiguity  

combinations, the network selects an ambiguity pair that is predicted to yield the lowest  

positioning  error. The input features include both measurement-based quantities (differential 

phases  and per-AP SNRs) and geometry-based quantities (inter-AP distances and angular 

relations). The output of the MLP is an estimated error metric for each candidate pair, and the pair 

with minimum predicted error is chosen. 

 

Fig. 5: Uplink UE positioning in a distributed AP deployment, where only phase measurements are taken 

into account for positioning. 
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The AP selection network is trained using labeled data where ground-truth errors are computed 

offline for all ambiguity pairs by a reference solver. Once trained, the selection can be  performed 

with a single forward pass. 

Simulation results show that this AI-based AP selection yields 95th-percentile errors in the  sub 

centimeter to sub-half-centimeter range, even in the presence of significant phase perturbations.  

Compared to a baseline that uses all ambiguities, the proposed selection strategy reduces  FLOP 

count by around 20% while improving high-percentile error performance. In contrast,  heuristic  

selection rules such as random choice or maximum-SNR choice suffer from large error  floors and  

occasional catastrophic failures (Fig. 6). 

 

 

Fig. 6: ECDF of the proposed approach and benchmarks. 

 

3.4 Neural Network Integrated Multistatic Sensing for CF JCAS  

The fourth work moves from pure positioning to multistatic radar sensing in a cell-free JCAS 

setting. A set of distributed transmit APs and receive APs, each equipped with uniform linear  

arrays, simultaneously provide communication and sensing functionalities. Communication  

waveforms, such as OFDM signals, are reused for sensing stationary targets via the reflections 

captured at the receive APs. 

The sensing pipeline proceeds as follows. First, least-squares channel estimation is performed  on 

the received communication signals to obtain frequency-domain channel matrices over subcarriers  

and time. These matrices are then rearranged and reduced in dimension using a coarse  timing 

estimation step, which focuses on delay taps where target echoes are expected. This reduction is 

important to keep the NN input size manageable. 

An MLP is then trained to map the reduced channel representation to the concatenated AoA  and 

AoD values of all targets in the scene. The network is trained with mean-squared error loss  over 

a dataset that spans a range of SNR values, numbers of APs, and target positions. 
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The NN-based estimator is benchmarked against an MLE solution that jointly searches over  AoA, 

AoD, and delay parameters. While MLE provides a performance upper bound, it is 

computationally expensive and scales poorly with the number of targets and APs. In contrast,  the 

NN approach achieves similar root-mean-squared error across a wide SNR range for single target  

scenarios, with a single forward pass. For multi-target cases, both methods see an increase  in error  

due to overlapping echoes, but the NN retains competitive performance and substantially  lower 

complexity. These results demonstrate that NN-based multistatic sensing is a promising  building  

block for practical CF JCAS implementations. 

 

3.5 Unified AI Framework for Sensing and Localization in 6G 

The four works collectively establish a consistent set of AI procedures and protocols for sensing 

and localization in future 6G networks: 

• Deep architectures (MLPs, CNNs, and hybrid NN plus optimization schemes) are 

tailored  to the structure of phase and channel measurements, enabling direct regression 

of positions and angles, as well as classification of integer ambiguities. 

• Training protocols explicitly include hardware and synchronization impairments, as 

well as a wide range of SNRs, to ensure robustness beyond idealized conditions. 

• Complexity is treated as a primary design constraint. Network pruning, feature 

reduction  (via coarse timing), and AP selection are used to reduce FLOP counts by 

factors ranging  from tens of percent (against prior NN baselines) to several orders of 

magnitude (against exhaustive MLE), while keeping centimeter-level accuracy. 

• The learned models are not only estimators but also decision tools, supporting AP 

selection  and AP-failure detection, which are essential for reliable and efficient 

operation in largescale  cell-free deployments. 

Overall, the body of work demonstrates that carefully designed AI/ML solutions can unlock 

high-precision, phase-only positioning and scalable multistatic sensing in realistic 6G-oriented 

cell-free and distributed MIMO systems. 
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Chapter 4 

 

4. AI Procedures and Protocols in Open RAN 

4.1 Open RAN Architecture and Intelligent Control 

Open Radio Access Network (Open RAN) is based on the principles of functional disaggregation, 

open interfaces, and software-defined control, enabling interoperability and multi-vendor 

deployments. The architecture decomposes the base station into Radio Units (RU), Distributed 

Units (DU), and Central Units (CU), while abstracting control and monitoring functionalities into 

the RAN Intelligent Controller (RIC). This separation provides the structural foundation for 

embedding artificial intelligence into radio access network procedures. 

A defining feature of Open RAN is the introduction of native data-driven intelligence through the 

RIC concept, which allows AI-based procedures to operate independently of vendor-specific 

baseband implementations. This architectural openness directly supports the applicability of 

machine learning across multiple layers of the RAN, from physical-layer processing to network-

level automation. 

 

Fig. 7: Open RAN Architecture 

 

4.2 Non-Real-Time and Near-Real-Time RIC Control Loops 

The RIC is logically split into the Non-Real-Time (Non-RT) RIC and the Near-Real-Time (Near-

RT) RIC, each supporting AI-driven procedures at different time scales. The Non-RT RIC operates 

on time scales larger than one second and focuses on long-term optimization, policy management, 
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analytics, and AI/ML model training. It hosts rApps that generate policies and enrichment 

information based on aggregated RAN data and external inputs, and distributes trained models to 

the Near-RT RIC via the A1 interface. 

The Near-RT RIC operates on time scales between tens of milliseconds and one second and 

enables near-real-time control of RAN elements through xApps. These xApps consume 

measurements exposed by RAN nodes and execute AI-based inference to drive control actions via 

the E2 interface, enabling adaptive radio resource management under dynamic channel and traffic 

conditions. 

 

Fig. 8: Near‑RT RIC and Non‑RT RIC 

 

4.3 xApps and rApps as AI Execution Units 

AI procedures in Open RAN are implemented through modular applications known as xApps and 

rApps. xApps reside within the Near-RT RIC and execute latency-sensitive AI inference tasks, 

such as adaptive resource allocation, interference mitigation, and real-time parameter tuning. 

These applications consume RAN measurements exposed through standardized interfaces and 

translate AI outputs into actionable control commands. 

rApps operate within the non-RT RIC and are responsible for computationally intensive tasks such 

as model training, policy optimization, and performance analytics. rApps leverage large-scale 

RAN data and external information sources to continuously improve AI models and system 

policies. The interaction between rApps and xApps establishes a closed loop learning and control 

framework that supports continuous adaptation and optimization. 

4.4 Distributed AI Execution at the DU/CU Level (dApps) 

While the Non-Real-Time and Near-Real-Time RAN Intelligent Controllers (RICs) enable AI-

driven control at time scales above several milliseconds, a growing class of AI-based radio 

functions requires ultra-low-latency execution and direct access to user-plane data. Such functions 

include real-time scheduling, link adaptation, beamforming and beam management, spectrum 
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sensing, and AI-assisted localization, whose performance is fundamentally constrained when 

implemented exclusively through RIC-based control loops. 

To address these requirements, the concept of distributed applications (dApps) has been proposed 

as an architectural extension to Open RAN. dApps are lightweight, cloud-native microservices 

deployed directly at the Distributed Unit (DU) and Central Unit (CU), where strict latency 

constraints and data locality prevent effective execution through the RIC alone. By operating close 

to the physical and MAC layers, dApps enable closed-loop AI-based control with sub-10 ms and 

even sub-millisecond response times. 

In contrast to xApps and rApps, which primarily rely on control-plane information exchanged via 

the E2 interface, dApps can directly access fine-grained PHY/MAC measurements and user-plane 

data. Transferring such data to the RIC is often impractical due to bandwidth, latency, and privacy 

considerations. Local execution of dApps at the DU/CU therefore provides a scalable and efficient 

mechanism for real-time AI inference and control. 

From a functional perspective, dApps extend AI applicability to the lowest layers of the RAN 

protocol stack. Representative use cases include AI-driven scheduling and link adaptation, 

beamforming and beam management in massive MIMO systems, real-time spectrum sensing and 

sharing, and low-latency positioning and sensing for integrated communication and sensing 

(ISAC). In this sense, dApps complement xApps and rApps within a hierarchical AI control 

framework, where intelligence is distributed across multiple time scales and architectural layers. 

Architecturally, dApps interact with RAN functions through high-speed, service-based interfaces 

that enable subscription to telemetry streams, access to user-plane data, and delivery of control 

actions without disrupting ongoing RAN operation. Furthermore, cooperation between dApps and 

xApps enables coordinated AI-driven decisions across real-time and near-real-time domains, 

supporting the evolution toward fully AI-native Open RAN architectures. 

 

Fig. 9: Comparison between RT RIC and dApp architectures . 

4.5 AI-Based Physical-Layer and MAC Procedures in Open RAN 

Channel estimation is a core physical-layer function and one of the primary applicability domains 

of machine learning in next-generation radio access networks. Learning-based techniques can 

significantly enhance channel estimation performance by improving robustness under user 

mobility, reducing pilot overhead, and mitigating model mismatch effects in complex propagation 
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environments. Within the Open RAN framework, AI-based channel estimation procedures can be 

flexibly deployed at different architectural points depending on latency constraints and 

computational requirements. 

Latency-critical inference tasks, such as channel estimation refinement and fast adaptation to 

short-term channel variations, may be executed close to the Distributed Unit (DU) or Radio Unit 

(RU), where direct access to low-level physical-layer measurements is available. In contrast, 

model training, retraining, and long-term adaptation naturally reside in the Non-Real-Time RIC, 

where large-scale data analytics and cross-cell information can be exploited. Open RAN enables 

standardized exposure of channel-related measurements and performance indicators, allowing AI 

models to be continuously trained, validated, and refined using aggregated RAN data. 

While AI-based channel estimation represents a fundamental enabling function, the role of 

machine learning in Open RAN is not limited to estimation tasks alone. In massive MIMO systems, 

accurate and timely channel knowledge directly feeds into a range of higher-layer and cross-layer 

decisions, including scheduling, link adaptation, power control, and beam management. As the 

dimensionality of the channel state increases and multi-user interactions become more complex, 

rule-based optimization approaches become increasingly inefficient and difficult to scale. 

Consequently, similar AI-driven principles can be extended beyond channel estimation to support 

data-driven scheduling decisions, adaptive modulation and coding selection, and dynamic resource 

allocation. These AI-assisted PHY- and MAC-layer procedures are particularly relevant in 

MaMIMO deployments, where real-time coordination among users, beams, and resources is 

essential to fully exploit spatial multiplexing gains. Within the Open RAN architecture, such 

functions can be distributed across different execution points, ranging from DU/CU-level real-

time inference to RIC-based coordination, policy optimization, and longer-term learning. 

By framing channel estimation as part of a broader class of AI-enabled physical-layer and MAC 

procedures, Open RAN provides a unified and flexible platform for integrating intelligence across 

multiple layers and time scales. This holistic view is essential for evolving toward AI-native RAN 

operation, where estimation, adaptation, and control are jointly optimized to meet the performance 

and scalability requirements of next-generation massive MIMO systems. 

 

4.6 AI-Driven Positioning and Localization Support in Open RAN 

Beyond communication-centric optimization, Open RAN enables advanced AI-driven localization 

and sensing procedures by supporting coordinated operation across multiple RAN nodes. Phase-

based positioning and Multistatic sensing rely on joint processing of measurements collected from 

geographically distributed RUs, requiring tight coordination and synchronization across the 

network. 

AI models deployed within the RIC can perform data fusion, feature extraction, and inference to 

jointly estimate user locations, environmental characteristics, and target parameters. In cell-free 

and JCAS architectures, Open RAN provides the necessary orchestration mechanisms to manage 

sensing resources, coordinate measurement collection, and adapt sensing strategies dynamically 

based on network conditions. 
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4.7 AI-Integrated Multistatic Sensing and CF JCAS 

The convergence of communication and sensing is strongly supported by the Open RAN paradigm. 

Neural-network-integrated Multistatic sensing in cell-free joint communication and sensing (CF 

JCAS) systems relies on cooperative operation across geographically distributed RUs and 

coordinated processing of sensing and communication data. 

Open RAN enables such coordination by exposing sensing-related measurements to the RIC, 

where AI-based data fusion and interpretation can be performed. AI-driven Multistatic sensing 

procedures benefit from flexible model placement across Near-RT and Non-RT RICs, enabling 

adaptive sensing–communication trade-offs and scalable deployment in dense and cell-free 

environments. 

 

4.8 Toward Autonomous and AI-Native Open RAN: Challenges and Outlook 

By combining disaggregated architectures, standardized interfaces, and multi-timescale control 

loops, Open RAN provides a solid foundation for autonomous RAN operation. Within this 

framework, AI-driven procedures for channel estimation, positioning, sensing, and radio resource 

management can be embedded into closed-loop control mechanisms that continuously adapt to 

time-varying network conditions, traffic dynamics, and propagation environments. This 

architectural and procedural alignment enables a shift from static configuration toward data-

driven, self-optimizing RAN behavior. 

At the same time, realizing fully autonomous and AI-native Open RAN operation introduces 

several open challenges. Strict latency constraints limit the complexity and placement of AI 

inference, particularly for real-time PHY and control-loop operations. Scalability in ultra-dense 

and cell-free deployments remains a critical concern due to increased data exchange, coordination 

overhead, and model management complexity. In addition, data heterogeneity across vendors and 

deployments, along with privacy and security considerations, complicates the training and 

deployment of robust AI models. 

Ensuring stability, robustness, and interpretability of AI-driven procedures is therefore essential 

for the practical adoption of autonomous Open RAN. Addressing these challenges will be a key 

step toward enabling intelligent radio access networks capable of supporting future wireless 

services with high reliability, adaptability, and operational efficiency. 

 

 

 

 



MiFuture, Grant Agreement Number:101119643                                                                        D3.2 AI procedures and protocols 

 

December 2025              Page 19 de 21    VOIS + UC3M 

 

Chapter 5 

 

5. Conclusions and Outlook 

This document presents a set of initial research results on AI-aided physical-layer signal 

processing, localization and sensing, and AI-enabled network procedures, with a focus on their 

feasibility and integration in next-generation wireless systems and Open RAN architectures. 

At the physical layer, the presented studies demonstrate that AI-based channel estimation can 

effectively overcome the limitations of conventional rule-based estimators in highly dynamic and 

heterogeneous radio environments. By leveraging data-driven inference, learning-based 

approaches reduce pilot overhead, improve robustness under mobility and hardware impairments, 

and mitigate model mismatch effects. The integration of explainable artificial intelligence (XAI) 

further strengthens interpretability and trust, which are essential for reliable deployment in large-

scale and safety-critical wireless systems. 

Beyond channel estimation, these AI-based physical-layer capabilities also act as key enablers for 

higher-layer and cross-layer decisions in massive MIMO systems, including scheduling, link 

adaptation, power control, and beam management, where rule-based optimization becomes 

increasingly inefficient due to high-dimensional channel dynamics. 

Building on accurate channel knowledge, deep-learning-based phase-only positioning enables 

high-precision localization without relying on time-of-arrival measurements or strict clock 

synchronization. Learning-driven resolution of integer ambiguities, failure-tolerant positioning 

strategies, and intelligent access point selection allow centimeter- and sub-centimeter-level 

accuracy to be maintained even in the presence of antenna faults and phase synchronization errors, 

while significantly reducing computational complexity compared to exhaustive model-based 

methods. 

In parallel, the integration of neural networks into multistatic sensing for cell-free joint 

communication and sensing (CF JCAS) demonstrates that communication signals can be 

efficiently reused for sensing purposes in distributed deployments. AI-based multistatic sensing 

enables joint estimation of angles of arrival and departure with competitive accuracy and 

substantially reduced complexity, making it a promising building block for scalable and practical 

CF JCAS implementations. 

At the network level, Open RAN architectures provide a flexible and standardized foundation for 

deploying, orchestrating, and managing AI-driven procedures across multiple time scales. The 

separation of Non-Real-Time and Near-Real-Time control loops, together with the use of rApps 

and xApps, enables closed-loop, data-driven RAN operation and supports the practical integration 

of AI-based physical-layer and sensing functionalities into interoperable and vendor-agnostic 

networks. 

In addition, emerging concepts such as distributed AI execution at the DU/CU level (dApps) 

highlight the need to complement RIC-based intelligence with ultra-low-latency AI functions 

operating close to the PHY and MAC layers, enabling real-time scheduling, beam management, 

and link adaptation in massive MIMO and cell-free deployments. 
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Looking forward, advancing these results toward operational systems requires continued research 

on model generalization, robustness under non-stationary environments, and computational 

efficiency for real-time deployment on resource-constrained devices. Further integration of online 

learning, continual adaptation, and cross-layer optimization will be critical to fully exploit the 

potential of AI-native physical-layer processing, localization, and sensing. At the network level, 

future efforts should focus on scalable model lifecycle management, efficient data collection and 

distribution, and robust control-loop design under strict latency constraints, including the 

coordinated operation of AI functions across RIC-based control loops and distributed execution 

points, while addressing challenges related to interpretability, stability, privacy, and security. 

Overall, the combined results and outlook presented in this deliverable indicate that AI-native 

approaches constitute a fundamental pathway toward autonomous, scalable, and context-aware 

wireless networks, enabling reliable communication, high-precision localization, and intelligent 

sensing in next-generation wireless systems, with AI-driven PHY and MAC intelligence jointly 

supporting both real-time and long-term network optimization. 
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