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Chapter 1

1. Introduction

Future wireless communication systems are expected to support unprecedented levels of
connectivity, reliability, and service diversity, driven by emerging applications such as high-
accuracy localization, integrated sensing and communication, and cell-free network architectures.
Achieving these requirements using conventional rule-based signal processing and protocol design
has become increasingly challenging in highly dynamic, dense, and heterogeneous radio
environments. In this context, artificial intelligence (AI) has emerged as a key enabler for
redesigning wireless system procedures and protocols toward adaptive and learning-driven
operation.

At the physical layer, Al-based channel estimation represents a fundamental procedure that
directly impacts beamforming, localization, sensing, and resource allocation. By leveraging data-
driven inference, Al-based channel estimation can reduce pilot overhead, improve robustness
under mobility, and mitigate model mismatch in complex propagation environments, providing a
reliable foundation for higher-level wireless functionalities.

Building upon accurate channel knowledge, phase-only positioning with deep learning enables
high-precision localization using phase information as a compact and hardware-efficient feature
set. Learning-based phase processing relaxes calibration requirements and enhances robustness
against noise and environmental dynamics, extending the role of Al from communication
performance optimization to context-aware wireless services.

In parallel, the convergence of communication and sensing has led to growing interest in joint
communication and sensing (JCAS) architectures. Neural-network-integrated multistatic sensing
for cell-free JCAS systems enables cooperative sensing, distributed data fusion, and intelligent
interpretation of multistatic measurements across geographically separated nodes. Such Al-driven
sensing procedures are particularly relevant in dense and cell-free deployments, where
coordination among multiple access points is essential.

At the network level, the deployment and coordination of these Al-driven procedures are enabled
by Al procedures and protocols in Open Radio Access Network (Open RAN) architectures. Open
RAN provides disaggregated, programmable, and standardized interfaces that support the
integration, orchestration, and lifecycle management of AI models across real-time and non-real-
time control loops, enabling scalable, interoperable, and Al-native wireless network operation.

This document presents the initial work of MiFuture Doctoral Candidates and their supervisors in

Al-aided channel estimation, localization and sensing, and their feasibility of integration with the
ORAN architecture.
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Chapter 2

2. Al-Based Channel Estimation

As the number of users and connected devices in the Internet of Things (IoT) continues to rise,
and as many applications demand higher data rates and lower latency, the motivation for
integrating artificial intelligence (AI) into 6th Generation (6G) networks becomes increasingly
compelling. Al can assist in handling highly complex communication tasks, including signal
detection, channel estimation, beamforming, sensing, and other sophisticated processes [1]. These
capabilities are particularly critical as 6G aims to support ultra-reliable, low-latency, and high-
capacity services. One of the central components we aim to enhance in 6G is sensing and channel
estimation, especially in applications such as autonomous driving and wearable devices [2]. By
leveraging Al, these tasks can be performed more efficiently and accurately, enabling better
overall system performance and user experience.

Traditional channel estimation methods, such as Least Squares (LS) and Linear Minimum Mean
Square Error (LMMSE), face clear limitations in these scenarios. For example, LS often requires
transmitting a larger number of pilot symbols, which reduces the effective data rate. LMMSE, on
the other hand, requires that the receiver has prior knowledge of the channel and noise statistics
and introduces significant computational complexity, making it less suitable for real-time or large
scale IoT systems [2]. These constraints highlight the need for more adaptive and intelligent
approaches capable of coping with dynamic wireless environments.

Studies show that even a lightweight one-dimensional convolutional neural network (1-D CNN)
used as a post-processing unit after conventional channel estimation can yield significant
improvements, such as a 30% reduction in residual carrier-frequency-offset (CFO) error. This
evidence motivates the use of Al in channel estimation through several possible approaches [3]:

Deep-learning-based algorithms can dynamically allocate pilot symbols online based on the
channel condition and available system resources, thereby reducing overhead while maintaining
high performance.

Learning-based methods can adaptively correct offsets by capturing and modeling the noise pattern
over time.

End-to-end models can jointly perform channel estimation, offset correction, and angle-of-arrival
(AoA) estimation within a single processing block.

Al-based approaches can enable scaling of the system to massive multiple-input multiple-output
(MIMO) configurations for multi-user scenarios.

Data-driven models can be trained on real-world measurements to ensure that the proposed
methods remain effective and robust in practical deployment scenarios. To this end, many studies
have explored the use of machine-learning (ML) and deep-learning (DL) methods for channel
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estimation. One approach treats the channel matrix as a two-dimensional (2D) image and
formulates the estimation task as an image-processing problem [4]. Another line of research
applies conventional pilot-based channel estimation and performs interpolation using a Super-
Resolution Convolutional Neural Network (SRCNN) [5, 6]. Other methods combine CNNs for
initial channel estimation with recurrent neural networks (RNNs) to leverage temporal
correlations and predict channel evolution over time [7]. These methods demonstrate that deep
learning can provide substantial improvements over traditional techniques, particularly in
dynamically varying wireless channels.

__________________________________________________________________
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Fig. 1: XAl-based channel estimation method. Model N identifies the relevant and irrelevant subcarriers
for channel estimation, guiding the DL-based utility model [8].

However, the blind application of deep-learning models is not fully reliable in the context of
wireless communication, as it is crucial to understand how a model makes its decisions. In [2], the
authors raise three critical questions that challenge the current use of DL models in wireless
systems:

”’[s there a way to better select the DL black-box high-dimensional model inputs?”
”’Is there a real need for such high-complex architectures?”

”Is there a way to provide interpretability to the decision-making strategy employed DL black box
mod- els?”

This is where the use of explainable artificial intelligence (XAI) becomes particularly relevant.

The fundamental idea behind XAl is to provide a clear explanation of why a DL model produces

a particular prediction. It is not enough to justify the decisions of the model; we must also be able
to interpret them reliably. This capability is essential to build trust in Al-based systems, especially
in safety-critical and sensitive applications such as Al-assisted remote surgery [2].

Two primary methods are commonly employed to design XAI models: perturbation-based and
gradient-based approaches. In the perturbation-based approach, the model is analyzed by
systematically modifying and perturbing input features and observing how these perturbations
affect the model’s output. In the gradient-based approach, the gradient of the output with respect
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to the input is backpropagated to assess the importance of each input feature, providing insight
into the decision-making process of the network [2].

XAl-trained models can also be classified into two categories: model-agnostic and model-specific.
In the model-agnostic case, the XAl training process does not rely on the internal structure or
weights of the original network. In contrast, model-specific approaches build the interpretability
mechanism based on the particular architecture, parameters, and learned weights of the already
trained model [2].

In [8], the authors introduced XAl into wireless communications for the first time in the context
of channel estimation. They employed a model-agnostic, perturbation-based XAI method to
estimate the wireless channel in an orthogonal frequency-division multiplexing (OFDM) system.
Their proposed channel-estimation algorithm is illustrated in Fig. 1. The core concept is to train a
model, referred to as Model N, to identify which subcarriers are relevant or irrelevant for channel
estimation. This model operates alongside a conventional DL-based utility model built using a
feedforward neural network (FNN). During training, intentional noise is added to the subcarriers.
By minimizing the loss function, the model learns which subcarriers do not contribute to accurate
estimation and should therefore be ignored. This approach enhances system performance in terms
of bit-error-rate (BER) while also reducing computational complexity, as fewer subcarriers need
to be considered for channel estimation.
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Chapter 3

3. Al-Driven Localization and Sensing with Deep Learning

This chapter summarizes a set of artificial intelligence (AI) contributions to high-precision
positioning and joint communication and sensing (JCAS) in next-generation cell-free/distributed

| MIMO systems. The attached works focus on (i) carrier phase positioning (CPP) using phase-only
measurements, avoiding time-of-arrival requirements, and (ii) neural network (NN)-based
multistatic sensing for joint angle-of-arrival (AoA) and angle-of-departure (AoD) estimation in
cell-free JCAS. Across the four papers, deep neural networks are used to:

* resolve integer ambiguities inherent to phase-only positioning with much lower
complexity than maximum-likelihood estimation (MLE),

» provide failure-tolerant positioning in the presence of antenna faults,

* maintain centimeter-level accuracy under phase synchronization errors via NN-based
access point (AP) selection,

» enable scalable multistatic sensing for joint AoA/AoD estimation from communication
signals.

3.1 Deep Learning for Integer Ambiguity Resolution

In distributed CPP, APs observe only carrier phases of the user equipment (UE) signal (Fig. 2).
The corresponding range information is ambiguous by integer multiples of the wavelength.
Classical MLE resolves these ambiguities by a dense grid search over the deployment region,
which is computationally prohibitive. To address this challenge, two deep learning approaches are
proposed. A multi-layer perceptron (MLP) directly maps differential phase measurements to the
2D UE position. A second, hybrid architecture first estimates integer ambiguity labels using a
neural classifier and then refines the position using a convolutional neural network (CNN) driven
by both phase measurements and the predicted ambiguities.

W SN
v Y Y
\r/ D wphase ambiguity
\1/ UE .{masurcd phase
A

AP

Fig. 2: Uplink positioning with distributed APs where only the carrier phase measurements at different
APs are used to estimate the UE position.
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Both models are trained in supervised fashion using synthetically generated measurements over
random UE positions. Mean-squared error loss is used for regression, and sparse categorical cross-
entropy is used for ambiguity classification. Network pruning is applied after initial training to
remove low-magnitude weights and further reduce inference complexity.

In a scenario with 20 APs and carrier frequencies of 800 MHz and 1.8 GHz, the CNN-based
approach achieves centimeter-level accuracy while reducing complexity by two to three orders of
magnitude compared with MLE. As shown in Fig. 3, typical 95th-percentile positioning errors are
on the order of 2-3 c¢m at a transmit power of 0 dBm, illustrating that phase-only CPP with deep
learning can match or surpass the accuracy of more traditional time-based methods, without
requiring clock synchronization.

1

—— MLP Model - 800 MHz
08 " -MLP Model - 1.8 GHz
"® | |——CNN Model - 800 MHz
= ==CNN Model - 1.8 GHz
r, 0.6 -
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Q
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Fig. 3: ECDF of the proposed NN at a transmit power of 0 dBm.

3.2  Failure-Tolerant Phase-Only Indoor Positioning

A second contribution extends phase-only CPP to indoor deployments with hardware impairments,
in particular antenna element failures at the APs. In this case, differential phase measurements are
affected both by noise and by the failure pattern, which can significantly degrade position estimates
if not handled explicitly. The proposed architecture combines a neural differential ambiguity
estimator with a gradient descent based geometric solver. The estimator is implemented as an MLP
with a shared trunk and multiple parallel output branches, each branch predicting the probability
distribution over integer ambiguities associated with a particular AP pair. The most likely
ambiguity labels are then fed into a hyperbola-intersection based solver that refines the UE position
by minimizing a quadratic cost function between estimated and geometry-induced differential
distances. Training data covers both fault-free and failure scenarios, with different numbers of
failing APs and multiple transmit power levels. This protocol allows the network to learn robust
features that generalize across hardware conditions. As shown in Fig. 4, the resulting scheme
achieves sub-centimeter to low-centimeter accuracy in a realistic indoor layout, even when several
APs are in failure. Reported 95th-percentile positioning errors remain below approximately 2 cm
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over a wide range of transmit powers and AP failure probabilities. At the same time, the overall
FLOP count is reduced by roughly 20-30% compared with earlier NN-based baselines, while
being orders of magnitude lower than MLE. A threshold test on the final cost value also enables
reliable AP-failure detection, providing a simple integrity monitoring mechanism.

1
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Positioning error [m]

Fig. 4: ECDF of the proposed approach and NN approaches in previous work at a transmit power of 0
dBm. The previous work benchmark performance assumes failure-free data (pf = 0).

3.3 Phase Synchronization Errors and AP Selection

A third study investigates phase-only positioning under phase synchronization errors between the
APs and a central location management function (Fig. 5). Random phase perturbations are added
to the ideal measurements, representing practical synchronization imperfections.

The underlying hyperbola-intersection method remains the core positioning engine, but an
additional MLP is introduced to perform intelligent AP selection. Instead of using all ambiguity
combinations, the network selects an ambiguity pair that is predicted to yield the lowest
positioning error. The input features include both measurement-based quantities (differential
phases and per-AP SNRs) and geometry-based quantities (inter-AP distances and angular
relations). The output of the MLP is an estimated error metric for each candidate pair, and the pair
with minimum predicted error is chosen.

‘FYY

uplink
transmission

fronthaul

A

DLMF

Fig. 5: Uplink UE positioning in a distributed AP deployment, where only phase measurements are taken
into account for positioning.
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The AP selection network is trained using labeled data where ground-truth errors are computed
offline for all ambiguity pairs by a reference solver. Once trained, the selection can be performed
with a single forward pass.

Simulation results show that this Al-based AP selection yields 95th-percentile errors in the sub
centimeter to sub-half-centimeter range, even in the presence of significant phase perturbations.
Compared to a baseline that uses all ambiguities, the proposed selection strategy reduces FLOP
count by around 20% while improving high-percentile error performance. In contrast, heuristic
selection rules such as random choice or maximum-SNR choice suffer from large error floors and
occasional catastrophic failures (Fig. 6).

0.9
0.8
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O 0.5
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1—Proposed approach
0.3 ! Random
: i Max-SNR
0.2 :—No selection
0.1 { Best achievable
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Positioning error [m]

Fig. 6: ECDF of the proposed approach and benchmarks.

3.4  Neural Network Integrated Multistatic Sensing for CF JCAS

The fourth work moves from pure positioning to multistatic radar sensing in a cell-free JCAS
setting. A set of distributed transmit APs and receive APs, each equipped with uniform linear
arrays, simultaneously provide communication and sensing functionalities. Communication
waveforms, such as OFDM signals, are reused for sensing stationary targets via the reflections
captured at the receive APs.

The sensing pipeline proceeds as follows. First, least-squares channel estimation is performed on
the received communication signals to obtain frequency-domain channel matrices over subcarriers
and time. These matrices are then rearranged and reduced in dimension using a coarse timing
estimation step, which focuses on delay taps where target echoes are expected. This reduction is
important to keep the NN input size manageable.

An MLP is then trained to map the reduced channel representation to the concatenated AoA and
AoD values of all targets in the scene. The network is trained with mean-squared error loss over
a dataset that spans a range of SNR values, numbers of APs, and target positions.
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The NN-based estimator is benchmarked against an MLE solution that jointly searches over AoA,
AoD, and delay parameters. While MLE provides a performance upper bound, it is

computationally expensive and scales poorly with the number of targets and APs. In contrast, the
NN approach achieves similar root-mean-squared error across a wide SNR range for single target
scenarios, with a single forward pass. For multi-target cases, both methods see an increase in error
due to overlapping echoes, but the NN retains competitive performance and substantially lower
complexity. These results demonstrate that NN-based multistatic sensing is a promising building

block for practical CF JCAS implementations.

3.5 Unified Al Framework for Sensing and Localization in 6G

The four works collectively establish a consistent set of Al procedures and protocols for sensing
and localization in future 6G networks:

» Deep architectures (MLPs, CNNs, and hybrid NN plus optimization schemes) are
tailored to the structure of phase and channel measurements, enabling direct regression
of positions and angles, as well as classification of integer ambiguities.

» Training protocols explicitly include hardware and synchronization impairments, as
well as a wide range of SNRs, to ensure robustness beyond idealized conditions.

» Complexity is treated as a primary design constraint. Network pruning, feature
reduction (via coarse timing), and AP selection are used to reduce FLOP counts by
factors ranging from tens of percent (against prior NN baselines) to several orders of
magnitude (against exhaustive MLE), while keeping centimeter-level accuracy.

* The learned models are not only estimators but also decision tools, supporting AP
selection and AP-failure detection, which are essential for reliable and efficient
operation in largescale cell-free deployments.

Overall, the body of work demonstrates that carefully designed AI/ML solutions can unlock
high-precision, phase-only positioning and scalable multistatic sensing in realistic 6G-oriented
cell-free and distributed MIMO systems.
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Chapter 4

4. Al Procedures and Protocols in Open RAN

4.1 Open RAN Architecture and Intelligent Control

Open Radio Access Network (Open RAN) is based on the principles of functional disaggregation,
open interfaces, and software-defined control, enabling interoperability and multi-vendor
deployments. The architecture decomposes the base station into Radio Units (RU), Distributed
Units (DU), and Central Units (CU), while abstracting control and monitoring functionalities into
the RAN Intelligent Controller (RIC). This separation provides the structural foundation for
embedding artificial intelligence into radio access network procedures.

A defining feature of Open RAN is the introduction of native data-driven intelligence through the
RIC concept, which allows Al-based procedures to operate independently of vendor-specific
baseband implementations. This architectural openness directly supports the applicability of
machine learning across multiple layers of the RAN, from physical-layer processing to network-
level automation.

II SMO

Non-RT RIC

near-RT RIC

Open FH
M-Plane

Fig. 7: Open RAN Architecture

4.2  Non-Real-Time and Near-Real-Time RIC Control Loops

The RIC is logically split into the Non-Real-Time (Non-RT) RIC and the Near-Real-Time (Near-
RT) RIC, each supporting Al-driven procedures at different time scales. The Non-RT RIC operates
on time scales larger than one second and focuses on long-term optimization, policy management,
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analytics, and AI/ML model training. It hosts rApps that generate policies and enrichment
information based on aggregated RAN data and external inputs, and distributes trained models to
the Near-RT RIC via the Al interface.

The Near-RT RIC operates on time scales between tens of milliseconds and one second and
enables near-real-time control of RAN elements through xApps. These xApps consume
measurements exposed by RAN nodes and execute Al-based inference to drive control actions via
the E2 interface, enabling adaptive radio resource management under dynamic channel and traffic
conditions.

Fig. 8: Near-RT RIC and Non-RT RIC

4.3 xApps and rApps as Al Execution Units

Al procedures in Open RAN are implemented through modular applications known as xApps and
rApps. xApps reside within the Near-RT RIC and execute latency-sensitive Al inference tasks,
such as adaptive resource allocation, interference mitigation, and real-time parameter tuning.
These applications consume RAN measurements exposed through standardized interfaces and
translate Al outputs into actionable control commands.

rApps operate within the non-RT RIC and are responsible for computationally intensive tasks such
as model training, policy optimization, and performance analytics. rApps leverage large-scale
RAN data and external information sources to continuously improve Al models and system
policies. The interaction between rApps and xApps establishes a closed loop learning and control
framework that supports continuous adaptation and optimization.

4.4  Distributed AI Execution at the DU/CU Level (dApps)

While the Non-Real-Time and Near-Real-Time RAN Intelligent Controllers (RICs) enable Al-
driven control at time scales above several milliseconds, a growing class of Al-based radio
functions requires ultra-low-latency execution and direct access to user-plane data. Such functions
include real-time scheduling, link adaptation, beamforming and beam management, spectrum
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sensing, and Al-assisted localization, whose performance is fundamentally constrained when
implemented exclusively through RIC-based control loops.

To address these requirements, the concept of distributed applications (dApps) has been proposed
as an architectural extension to Open RAN. dApps are lightweight, cloud-native microservices
deployed directly at the Distributed Unit (DU) and Central Unit (CU), where strict latency
constraints and data locality prevent effective execution through the RIC alone. By operating close
to the physical and MAC layers, dApps enable closed-loop Al-based control with sub-10 ms and
even sub-millisecond response times.

In contrast to xApps and rApps, which primarily rely on control-plane information exchanged via
the E2 interface, dApps can directly access fine-grained PHY/MAC measurements and user-plane
data. Transferring such data to the RIC is often impractical due to bandwidth, latency, and privacy
considerations. Local execution of dApps at the DU/CU therefore provides a scalable and efficient
mechanism for real-time Al inference and control.

From a functional perspective, dApps extend Al applicability to the lowest layers of the RAN
protocol stack. Representative use cases include Al-driven scheduling and link adaptation,
beamforming and beam management in massive MIMO systems, real-time spectrum sensing and
sharing, and low-latency positioning and sensing for integrated communication and sensing
(ISAC). In this sense, dApps complement xApps and rApps within a hierarchical Al control
framework, where intelligence is distributed across multiple time scales and architectural layers.

Architecturally, dApps interact with RAN functions through high-speed, service-based interfaces
that enable subscription to telemetry streams, access to user-plane data, and delivery of control
actions without disrupting ongoing RAN operation. Furthermore, cooperation between dApps and
xApps enables coordinated Al-driven decisions across real-time and near-real-time domains,
supporting the evolution toward fully Al-native Open RAN architectures.
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(a) RT-RIC deployment (b) dApp deployment
Fig. 9: Comparison between RT RIC and dApp architectures.

4.5 Al-Based Physical-Layer and MAC Procedures in Open RAN

Channel estimation is a core physical-layer function and one of the primary applicability domains
of machine learning in next-generation radio access networks. Learning-based techniques can
significantly enhance channel estimation performance by improving robustness under user
mobility, reducing pilot overhead, and mitigating model mismatch effects in complex propagation
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environments. Within the Open RAN framework, Al-based channel estimation procedures can be
flexibly deployed at different architectural points depending on latency constraints and
computational requirements.

Latency-critical inference tasks, such as channel estimation refinement and fast adaptation to
short-term channel variations, may be executed close to the Distributed Unit (DU) or Radio Unit
(RU), where direct access to low-level physical-layer measurements is available. In contrast,
model training, retraining, and long-term adaptation naturally reside in the Non-Real-Time RIC,
where large-scale data analytics and cross-cell information can be exploited. Open RAN enables
standardized exposure of channel-related measurements and performance indicators, allowing Al
models to be continuously trained, validated, and refined using aggregated RAN data.

While Al-based channel estimation represents a fundamental enabling function, the role of
machine learning in Open RAN is not limited to estimation tasks alone. In massive MIMO systems,
accurate and timely channel knowledge directly feeds into a range of higher-layer and cross-layer
decisions, including scheduling, link adaptation, power control, and beam management. As the
dimensionality of the channel state increases and multi-user interactions become more complex,
rule-based optimization approaches become increasingly inefficient and difficult to scale.

Consequently, similar Al-driven principles can be extended beyond channel estimation to support
data-driven scheduling decisions, adaptive modulation and coding selection, and dynamic resource
allocation. These Al-assisted PHY- and MAC-layer procedures are particularly relevant in
MaMIMO deployments, where real-time coordination among users, beams, and resources is
essential to fully exploit spatial multiplexing gains. Within the Open RAN architecture, such
functions can be distributed across different execution points, ranging from DU/CU-level real-
time inference to RIC-based coordination, policy optimization, and longer-term learning.

By framing channel estimation as part of a broader class of Al-enabled physical-layer and MAC
procedures, Open RAN provides a unified and flexible platform for integrating intelligence across
multiple layers and time scales. This holistic view is essential for evolving toward Al-native RAN
operation, where estimation, adaptation, and control are jointly optimized to meet the performance
and scalability requirements of next-generation massive MIMO systems.

4.6  Al-Driven Positioning and Localization Support in Open RAN

Beyond communication-centric optimization, Open RAN enables advanced Al-driven localization
and sensing procedures by supporting coordinated operation across multiple RAN nodes. Phase-
based positioning and Multistatic sensing rely on joint processing of measurements collected from
geographically distributed RUs, requiring tight coordination and synchronization across the
network.

Al models deployed within the RIC can perform data fusion, feature extraction, and inference to
jointly estimate user locations, environmental characteristics, and target parameters. In cell-free
and JCAS architectures, Open RAN provides the necessary orchestration mechanisms to manage
sensing resources, coordinate measurement collection, and adapt sensing strategies dynamically
based on network conditions.
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4.7 Al-Integrated Multistatic Sensing and CF JCAS

The convergence of communication and sensing is strongly supported by the Open RAN paradigm.
Neural-network-integrated Multistatic sensing in cell-free joint communication and sensing (CF
JCAS) systems relies on cooperative operation across geographically distributed RUs and
coordinated processing of sensing and communication data.

Open RAN enables such coordination by exposing sensing-related measurements to the RIC,
where Al-based data fusion and interpretation can be performed. Al-driven Multistatic sensing
procedures benefit from flexible model placement across Near-RT and Non-RT RICs, enabling
adaptive sensing—communication trade-offs and scalable deployment in dense and cell-free
environments.

4.8 Toward Autonomous and Al-Native Open RAN: Challenges and Outlook

By combining disaggregated architectures, standardized interfaces, and multi-timescale control
loops, Open RAN provides a solid foundation for autonomous RAN operation. Within this
framework, Al-driven procedures for channel estimation, positioning, sensing, and radio resource
management can be embedded into closed-loop control mechanisms that continuously adapt to
time-varying network conditions, traffic dynamics, and propagation environments. This
architectural and procedural alignment enables a shift from static configuration toward data-
driven, self-optimizing RAN behavior.

At the same time, realizing fully autonomous and Al-native Open RAN operation introduces
several open challenges. Strict latency constraints limit the complexity and placement of Al
inference, particularly for real-time PHY and control-loop operations. Scalability in ultra-dense
and cell-free deployments remains a critical concern due to increased data exchange, coordination
overhead, and model management complexity. In addition, data heterogeneity across vendors and
deployments, along with privacy and security considerations, complicates the training and
deployment of robust Al models.

Ensuring stability, robustness, and interpretability of Al-driven procedures is therefore essential
for the practical adoption of autonomous Open RAN. Addressing these challenges will be a key
step toward enabling intelligent radio access networks capable of supporting future wireless
services with high reliability, adaptability, and operational efficiency.
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Chapter 5

5. Conclusions and Outlook

This document presents a set of initial research results on Al-aided physical-layer signal
processing, localization and sensing, and Al-enabled network procedures, with a focus on their
feasibility and integration in next-generation wireless systems and Open RAN architectures.

At the physical layer, the presented studies demonstrate that Al-based channel estimation can
effectively overcome the limitations of conventional rule-based estimators in highly dynamic and
heterogeneous radio environments. By leveraging data-driven inference, learning-based
approaches reduce pilot overhead, improve robustness under mobility and hardware impairments,
and mitigate model mismatch effects. The integration of explainable artificial intelligence (XAI)
further strengthens interpretability and trust, which are essential for reliable deployment in large-
scale and safety-critical wireless systems.
Beyond channel estimation, these Al-based physical-layer capabilities also act as key enablers for
higher-layer and cross-layer decisions in massive MIMO systems, including scheduling, link
adaptation, power control, and beam management, where rule-based optimization becomes
increasingly inefficient due to high-dimensional channel dynamics.

Building on accurate channel knowledge, deep-learning-based phase-only positioning enables
high-precision localization without relying on time-of-arrival measurements or strict clock
synchronization. Learning-driven resolution of integer ambiguities, failure-tolerant positioning
strategies, and intelligent access point selection allow centimeter- and sub-centimeter-level
accuracy to be maintained even in the presence of antenna faults and phase synchronization errors,
while significantly reducing computational complexity compared to exhaustive model-based
methods.

In parallel, the integration of neural networks into multistatic sensing for cell-free joint
communication and sensing (CF JCAS) demonstrates that communication signals can be
efficiently reused for sensing purposes in distributed deployments. Al-based multistatic sensing
enables joint estimation of angles of arrival and departure with competitive accuracy and
substantially reduced complexity, making it a promising building block for scalable and practical
CF JCAS implementations.

At the network level, Open RAN architectures provide a flexible and standardized foundation for
deploying, orchestrating, and managing Al-driven procedures across multiple time scales. The
separation of Non-Real-Time and Near-Real-Time control loops, together with the use of rApps
and xApps, enables closed-loop, data-driven RAN operation and supports the practical integration
of Al-based physical-layer and sensing functionalities into interoperable and vendor-agnostic
networks.

In addition, emerging concepts such as distributed Al execution at the DU/CU level (dApps)
highlight the need to complement RIC-based intelligence with ultra-low-latency Al functions
operating close to the PHY and MAC layers, enabling real-time scheduling, beam management,
and link adaptation in massive MIMO and cell-free deployments.
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Looking forward, advancing these results toward operational systems requires continued research
on model generalization, robustness under non-stationary environments, and computational
efficiency for real-time deployment on resource-constrained devices. Further integration of online
learning, continual adaptation, and cross-layer optimization will be critical to fully exploit the
potential of Al-native physical-layer processing, localization, and sensing. At the network level,
future efforts should focus on scalable model lifecycle management, efficient data collection and
distribution, and robust control-loop design under strict latency constraints, including the
coordinated operation of Al functions across RIC-based control loops and distributed execution
points, while addressing challenges related to interpretability, stability, privacy, and security.

Overall, the combined results and outlook presented in this deliverable indicate that Al-native
approaches constitute a fundamental pathway toward autonomous, scalable, and context-aware
wireless networks, enabling reliable communication, high-precision localization, and intelligent
sensing in next-generation wireless systems, with Al-driven PHY and MAC intelligence jointly
supporting both real-time and long-term network optimization.
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